
 Foreword

 This is a collection of 24 articles that comprised the Christmas Calendar of 2013,
for and by the Umbraco Community, called “24 Days In Umbraco”.

Once again, it was a lot of fun and the articles were diverse, advanced and all in all a great read.
	Have a great time reading through them all, and please give all the authors a High-Five in some form.

— 'til next year,

	Jan Skovgaard, Sebastian Dammark & Chriztian Steinmeier

 Editor-proofing Umbraco
— by Tim Payne
Editors. They're the whole point of a CMS really, aren't they? You build a nice CMS for them to use, and then they get busy doing the day to day entry of the content. Umbraco makes it very easy for them to do this, but it also makes it quite easy for them to do things that you would rather they didn't.......

Let me give you an example. You've built a large(ish) site, and you have a settings section that contains things like sidebar boxes and adverts. So far, so good, but what happens when your client, who likes to tinker with stuff, deletes the settings section by accident? Nuking your carefully constructed settings? Then lets say one of the other editors empties the recycling bin. When they phone you up to ask you why the site is suddenly broken, the chances are that you'll look a bit like this.......

 [image: EEEEEEEEEEEEEEEEEEEEEEEEDIIIITOOOOOOOOOOOOORS!!!]

 EEEEEEEEEEEEEEEEEEEEEEEEDIIIITOOOOOOOOOOOOORS!!!

So how do you stop the client from deleting, copying and moving things that they shouldn't? Handily, the API exposes a bunch of methods that you can hook into to remove menu items etc. You can code this for each project you do, but it's REALLY boring (trust me, I used to do it for each project, and it sucked). So I wrote a package that would allow me to do it in a config file, no coding required!!!

You can download the package from it's our.umbraco project page. Install it just like you would with any other package, and you're good to go. Note: the package is not currently compatible with Umbraco 7. I'm working on a compatible version at the moment.

Here's an example site content tree with some settings nodes. Notice the context menu contains all sorts of things that we probably don't want the editors to do with the node, like delete, copy set hostnames etc.

 [image: Look at all those nasty options! *shudder*]

 Look at all those nasty options! *shudder*

When the package installs, it creates a new config file called "customMenus.config" in the /config folder of your Umbraco site. The config file looks a bit like this:

<?xml version="1.0" encoding="utf-8" ?>
<!--
ignoreForAdmin: set this to true if you'd like to show ALL menu options for members of the Administrator group

useInMediaSection: set this to true if you want the rules to apply to Media items as well

Custom Menus Rules:

You can add as many rules as you like, each rule has the following properties:
 docTypeAlias - the doc type alias the rule applies to (case sensitive)
 nodeId - the node the rule applies to (use instead of docTypeAlias)
 clickAction - if you set some javascript / a link here, will override the default click action for the node
 mentItems - a comma separated list of menu items (Case sensitive, see list below for common values)
 removeMenuItems - a comma separated list of menu items to remove (Case sensitive, see list below for common values)

This package should support any menu items that are installed in your application and applicable to contet items.
You should use the Alias of the menu actions, for reference, I have include the list of default content actions that come
with Umbraco here:

assignDomain - assign host name
auditTrail - view audit trail
browse - browe node
copy - copy node
delete - delete node
emptyTrashcan - empty recycle bin
liveEdit - live editor link
move - move content
create - create new content
notify - notification link
protect - member authentication link
publish - publish page
refreshNode - reload nodes
rights - set admin user permissions list
rollback - rollback link
sendToTranslate - send to translation link
sort - sort documents
sendtopublish - send to publis
translate - translate link
unpublish - unpublish page
separator - menu divider

Example 1: disable click and only allow "refresh" menu item on "settings" doc type
<add docTypeAlias="settings" nodeId="" clickAction="javascript:UmbClientMgr.appActions().openDashboard('content');" menuItems="refreshNode" />

Example 2: normal click action, only affect node id 1057 and show create, sort and publish, with a divider
<add docTypeAlias="" nodeId="1057" clickAction="" menuItems="create,sort,separator,refreshNode" />

Example 3: remove delete option from the "homePage" docType
<add docTypeAlias="homePage" nodeId="" clickAction="" removeMenuItems="delete" />
-->
<customMenus>
 <ignoreForAdmin>false</ignoreForAdmin>
 <useInMediaSection>false</useInMediaSection>
 <menuRules>
 <!-- add your rules here -->
 </menuRules>
</customMenus>
An untouched custom menus config file, just waiting for you to fill it full of rules!

Basic Configuration

Right, first things first. The settings node itself. The only thing that you should be able to do with it really is reload the sub-nodes, and we don't really want the editors to be able to get to the edit screen either, as we don't want them to unpublish it, rename it, or preview it. Assuming that the settings node has an alias of "settings", the config file would now look like this:

<?xml version="1.0" encoding="utf-8" ?>
<customMenus>
 <ignoreForAdmin>false</ignoreForAdmin>
 <useInMediaSection>false</useInMediaSection>
 <menuRules>
 <add docTypeAlias="settings" nodeId="" clickAction="javascript:UmbClientMgr.appActions().openDashboard('content');" menuItems="refreshNode" />
 </menuRules>
</customMenus>
Our first rule, this sets the click action to open the content dashboard rather than the editor, and only has the reload nodes menu item!

Refreshing the tree (this is important! You MUST refresh the tree after you've changed the settings for the new menu items to take effect), we can now see that the right click menu only has the one option in it, "reload nodes". Also, if you click on the settings node, you'll get the content dashboard instead of the editor page.

 [image: Much, much better! *yay*]

 Much, much better! *yay*

How does it work?

Looking at the config file entry, you'll see there are the following options on each rule in the config file:

	docTypeAlias - this allows you to specify the document type alias that the rule should apply to. ALL content nodes of this type will have this rule applied to them.

	nodeId - if you want the rule to JUST apply to a single node, add it's node id here, and leave the docTypeAlias empty.

	clickAction - if you want to overide the action when someone clicks on the node in the tree, paste the code you want in the link here. It can be a physical URL, or a javascript call.

	menuItems - enter a comma separated list of the menu items that should be used for this rule. The default config file lists all of the available options that you can use, as well as the special separator line.

Using these settings, it's possible to have rules that apply to all documents of a specific type, or just individual content nodes. The plugin also respects the permissions of the user, so even if you define menu items that a user shouldn't see, they won't get shown them if they don't have permission to use them.

Now that you've seen how that works, you can go through and set up the rules for each of the other settings sections. So for example, you might specify that the LHS Boxes settings node will only have the options to create, sort and reload nodes, and that the boxes themselves can only have delete move and publish. Below is an example of a more complete customMenus.config file:

<?xml version="1.0" encoding="utf-8" ?>
<customMenus>
	<ignoreForAdmin>false</ignoreForAdmin>
	<useInMediaSection>false</useInMediaSection>
	<menuRules>
		<!-- general site content rules -->
		<add docTypeAlias="HomePage" nodeId="" clickAction="" removeMenuItems="delete,copy,move" />
		<add docTypeAlias="NotFoundPage" nodeId="" clickAction="" removeMenuItems="delete,copy,move" />
		<add docTypeAlias="ErrorPage" nodeId="" clickAction="" removeMenuItems="delete,copy,move" />
		<add docTypeAlias="RssFeed" nodeId="" clickAction="" removeMenuItems="delete,copy,move" />
		<add docTypeAlias="SiteSearch" nodeId="" clickAction="" removeMenuItems="delete,copy,move" />
		<add docTypeAlias="Sitemap" nodeId="" clickAction="" removeMenuItems="delete,copy,move" />
		<add docTypeAlias="About" nodeId="" clickAction="" removeMenuItems="delete,copy,move" />
		<add docTypeAlias="Careers" nodeId="" clickAction="" removeMenuItems="delete,copy,move" />
		<add docTypeAlias="ContactUs" nodeId="" clickAction="" removeMenuItems="delete,copy,move" />
		<add docTypeAlias="CustomerCare" nodeId="" clickAction="" removeMenuItems="delete,copy,move" />
		<add docTypeAlias="FaqAskQuestion" nodeId="" clickAction="" removeMenuItems="delete,copy,move" />
		<add docTypeAlias="FaqSearch" nodeId="" clickAction="" removeMenuItems="delete,copy,move" />
		<add docTypeAlias="Faqs" nodeId="" clickAction="" removeMenuItems="delete,copy,move" />
		<add docTypeAlias="GoogleSitemap" nodeId="" clickAction="" removeMenuItems="delete,copy,move" />
		<add docTypeAlias="News" nodeId="" clickAction="" removeMenuItems="delete,copy,move" />
		<add docTypeAlias="DateFolder" nodeId="" clickAction="" removeMenuItems="copy,move" />
		<add docTypeAlias="ProductsLandingPage" nodeId="" clickAction="" removeMenuItems="delete,copy,move" />
		<add docTypeAlias="" nodeId="1196" clickAction="" removeMenuItems="delete,copy,move" />
		<add docTypeAlias="" nodeId="1207" clickAction="" removeMenuItems="delete,copy,move" />
		<add docTypeAlias="" nodeId="1211" clickAction="" removeMenuItems="delete,copy,move" />
		
		<!-- general settings section rules -->
		<add docTypeAlias="Settings" nodeId="" clickAction="javascript:UmbClientMgr.appActions().openDashboard('content');" menuItems="refreshNode" />
		<!-- lhs sidebar boxes rules -->
		<add docTypeAlias="SettingsLhsBoxes" nodeId="" clickAction="javascript:UmbClientMgr.appActions().openDashboard('content');" menuItems="create,sort,separator,refreshNode" />
		<add docTypeAlias="SettingsLhsBoxStat" nodeId="" clickAction="" menuItems="delete,separator,move,separator,publish" />
		<add docTypeAlias="SettingsLhsBoxTextImageLink" nodeId="" clickAction="" menuItems="delete,separator,move,separator,publish" />
		<add docTypeAlias="SettingsLhsBoxDownload" nodeId="" clickAction="" menuItems="delete,separator,move,separator,publish" />
		<add docTypeAlias="SettingsLhsBoxImage" nodeId="" clickAction="" menuItems="delete,separator,move,separator,publish" />
		<add docTypeAlias="SettingsLhsBoxSocial" nodeId="" clickAction="" menuItems="delete,separator,move,separator,publish" />
		<add docTypeAlias="SettingsLhsBoxVideo" nodeId="" clickAction="" menuItems="delete,separator,move,separator,publish" />
		<add docTypeAlias="SettingsLhsCtaButtons" nodeId="" clickAction="" menuItems="delete,separator,move,separator,publish" />
		<add docTypeAlias="SettingsLhsBoxFolder" nodeId="" clickAction="" menuItems="create,separator,delete,separator,move,separator,sort,publish,refreshNode" />
	</menuRules>
</customMenus>
Here is a more complete example with many rules set up for various different document types and specific nodes.

Removing menu items

What if you just want to remove certain options from the menu? Lets say that you have a structurally important page with some special functionality that should never be deleted, such as a contact form. Easy! Instead of "menuItems" on your rule, use "removeMenuItems" and list the menu items that you would like to remove.

The example rule below removes the delete and move options from a specific page:

<?xml version="1.0" encoding="utf-8" ?>
<customMenus>
 <ignoreForAdmin>false</ignoreForAdmin>
 <useInMediaSection>false</useInMediaSection>
 <menuRules>
 <add docTypeAlias="contactForm" nodeId="" clickAction="" removeMenuItems="delete,copy,move" />
 </menuRules>
</customMenus>
This rule will remove the delete, copy and move menu options from the "contactForm" document type.

Here's what the menu on the contact form looks like once this rule is in place:

 [image: Notice that the copy, move and delete menu items are gone!]

 Notice that the copy, move and delete menu items are gone!

Other options

There are two other options that you can set to affect the behaviour of the package:

	ignoreForAdmin - setting this to true means that the rules are ignored for all members of the Administrator group, so you can still move and delete things that the editors can't.

	useInMediaSection - setting this to true means that you can have rules that apply to the media section as well as the content section!

Alternatives to this method

You can also accomplish some of this by using the permissions in Umbraco. By right clicking on any node in the tree, you can set which users can perform what actions. However, I've found that if you have a lot of users and/or content, settings the rules for individual users can be quite time consuming, and as you can't set permissions for groups, you have to set the permissions for each new user that gets created (so you have to remember to set the permissions for each new user). Using the package means that you can set the rules at site launch, and all users have the menu rules automatically. If you'd like to find out more about using the built in Umbraco permissions, check out this page on our.umbraco!

Hiding tabs in the CMS

Another thing that you might want to do is hide certain tabs on some pages from a user, or groups of users. You can do this with either my own Tab Hider package, which you can download from our.umbraco, or with Anthony Dang's uHidesy (also available on our.umbraco). My tab hider package allows you configure tabs that should be hidden for certain DocTypes and users, again via a config file, whereas uHidesy adds a control that is only visible to administrators that allows you to set up hiding options for both tabs and properties on a particular page.

For the sake of space, I'm just going to use my Tab Hider package in this example, but I encourage you to try out uHidesy as well and see which one suits your requirements best!

Install the package as you would normally (again, this package is not currenlty compatible with Umbraco 7, and again, I'm working on fixing that!) and it will add another config file, called "tabHider.config" to your /config folder.

Here is an example config file, where I've hidden the "SEO" tab on all document types from the writer and editor groups on the site, and the "Right Hand Boxes" tab from editors and writers, but only on the "homePage" document type:

<?xml version="1.0" encoding="utf-8" ?>
<tabHider>
 <onlyShowToRoot>false</onlyShowToRoot>
 <disableHiddenValidators>true</disableHiddenValidators>
 <hideRules>
 <!--
 For each tab that you want to hide, include an entry here, the format is:

 <add tabName="" hideFrom="" docTypeAliases="" />

 tabName = the name of the tab to hide
 hideFrom = comma separated list of users to hide the tab from
 docTypeAliases = comma separated list of doctypes the hide applies to, leave empty or omit to have the rule apply to the tab on all doc types
 -->
 <add tabName="seo" hideFrom="writer,editor" />
 <add tabName="Right Hand Boxes" hideFrom="writer,editor" docTypeAliases="homePage" />
 </hideRules>
</tabHider>
A basic tab hider configuration example

The rules are very simple! There are three properties that you can set for each rule:

	tabName - this is the text of the tab that you want to hide.

	hideFrom - a comma separated list of the user type aliases you would like to hide the tab from.

	docTypeAliases - a comma separated list of the document type aliases that the rule should apply to. If you omit this property, the rule will apply to ALL document types.

Set the rules up that you need for all of the tabs and user groups, and you're good to go!

Boom! Your site is now considerably more editor proof!!!

With just a couple of simple package installs, and some easy config rules, you've now made it much harder for your editors to do anything that's likely to cause them (and by extension, YOU) problems, like deleting, copying or moving important things they shouldn't!

This is something that the editors probably won't even notice, but it's worth doing. I've been doing this as a matter of course on my sites for a few years now and it's worth it for the headaches it can save!

There are also a bunch of things you can do from a basic useability point of view that the mighty Doug Robar covered in his excellent talk on being an Umbraco Superhero. You can view the slides from his presentation on his blog. It's an interesting read, and I urge you to check it out!

Thanks for reading, I hope you found this useful!
All your logs are belong to log4net
— by Ismail Mayat
History lesson

As you may or may not be aware since Umbraco 4.10 all internal logging by Umbraco is now done by the awesome log4net logging framework. The log4net framework is a port from the equally excellent log4j. I have used log4net in the past on non Umbraco projects and love it, so I was really excited when it was announced that Umbraco would make use of it.

Log4net in Umbraco

Log4net is configured using an XML config file. In Umbraco this file lives in the config directory and is called log4net.config. Out of the box you get one appender already setup for you. This is the AsynchronousLog4NetAppender, this writes all log statements to a log file that lives in App_Data\Logs\UmbracoTraceLog.txt.

Here is where it gets interesting; log4net is a highly customisable logging framework, you can make use of any number of standard out of the box appenders or you can write your own.

Other appenders

I am just going to cover one of the standard appenders - the SMTP appender and how I make use of it regularly in my code.

When I am writing code for macros or for Umbraco events like document publish or Examine GatheringNodeData I will for critical sections always wrap with a try catch block and in the exception block add a log4net statement.

public MyClass{
	public void SomeCriticalMethod(){
		try{
		 //some critical code here
		}
		catch(Exception ex){
			LogHelper.Error(typeof(MyClass), "Error exceuting task”, ex);
		}
	}
}

Code with critical section

In my log4net config file I add entry for the SMTP appender which looks something like

<appender name="SmtpAppender" type="log4net.Appender.SmtpAppender">
	<to value="jo@site.com" />
	<from value="me@site.com" />
	<subject value="Info graphic error" />
	<smtpHost value="localhost" />
	<bufferSize value="512" />
	<lossy value="true" />
	<evaluator type="log4net.Core.LevelEvaluator">
		<threshold value="ERROR"/>
	</evaluator>
	<layout type="log4net.Layout.PatternLayout">
		<conversionPattern value="%newline%date [%thread] %-5level %logger [%property{NDC}] - %message%newline%newline%newline" />
	</layout>
</appender>

SMTP appender config

Additionally I also setup a filter. If this was not done then anytime there is an error I will receive emails it can get a bit spamtastic! I am only interested in receiving emails when my critical section fails. The filter looks like

<filter type="log4net.Filter.LoggerMatchFilter">
	<loggerToMatch value=" MyClass" />
</filter>
<filter type="log4net.Filter.DenyAllFilter" />

filter config

Now I will only receive emails when my method fails in MyClass class.

You could even set up an Error500 page in your web.config, this page will not be an umbraco page but a stand-alone aspx page (You will need to add it to the reserved urls settings in your web.config so that Umbraco request pipeline does not try to handle it)

 <customErrors mode="RemoteOnly" redirectMode="ResponseRewrite">
 <error statusCode="500" redirect="/Error500.aspx" />
 </customErrors>
Error 500 config

and in the aspx page log any unhandled exceptions,

 public partial class Error500 : System.Web.UI.Page
 {
 private static readonly ILog log = LogManager.GetLogger(typeof(Error500));

 protected void Page_Load(object sender, EventArgs e)
 {
 LogError();
 }

 private void LogError()
 {
 Exception objErr = Server.GetLastError().GetBaseException();
 log.Error("Error500 page",objErr);
 }
 }
Error 500 code behind

so the user gets a friendly error message and you get an email telling you its hit the fan, no more nasty YSODs.

Custom appenders - LiveLogger

As well as standard out of the box appenders you can also easily create your own appender and in the LiveLogger project I made use of a SignalR appender for log4net.

using System;
using log4net.Appender;
using log4net.Core;

namespace LiveLogger
{
 public class LogAppender : AppenderSkeleton
 {
 private FixFlags _fixFlags = FixFlags.All;

 public Action<LogEntry> MessageLogged;

 public static LogAppender Instance { get; private set; }

 public LogAppender()
 {
 Instance = this;
 }

 virtual public FixFlags Fix
 {
 get { return _fixFlags; }
 set { _fixFlags = value; }
 }

 override protected void Append(LoggingEvent loggingEvent)
 {
 // LoggingEvent may be used beyond the lifetime of the Append()
 // so we must fix any volatile data in the event
 loggingEvent.Fix = Fix;

 var formattedEvent = RenderLoggingEvent(loggingEvent);

 var handler = MessageLogged;
 if (handler != null)
 {
 handler(new LogEntry(formattedEvent, loggingEvent));
 }
 }
 }

 public class LogEntry
 {
 public string FormattedEvent { get; private set; }
 public LoggingEvent LoggingEvent { get; private set; }

 public LogEntry(string formttedEvent, LoggingEvent loggingEvent)
 {
 FormattedEvent = formttedEvent;
 LoggingEvent = loggingEvent;
 }
 }
}
Live logger appender

When you install the package it will insert the appender configuration into your log4net config file,

 <appender name="LiveLoggerAppender" type="LiveLogger.LogAppender">
 <layout type="log4net.Layout.PatternLayout">
 <conversionPattern value="%date %-5level - %message%newline" />
 </layout>
 </appender>

Livelogger config entry

I find this to be very useful during development. So I will in appropriate places insert logging statements into my code and again make use of try catch blocks and also log exceptions.

Then if something I am working on is failing. I will open livelogger then re run the action and look at the log statements, it is also very useful on a live site and a lot easier than constantly pulling down the log file from the app_data directory.

This is only touching the surface of some of the log4net capabilities; You can really go to town with a wide mixture of appenders and filters to fine tune your logging to a number of different sinks, files, databases, SMTP servers and even custom sinks you write yourself.
Bust a cache
— by Jesper Hauge
Ever had the following conversation with a client?

Client: "I just checked the website to see the changes you told me you'd deployed, but I can't see any. Are you sure you actually deployed it?"

You: "Are you looking at it in your browser now?"

Client: "Yes"

You: "Try holding down the Ctrl key and press F5"

Client: "Wait I'll put down my phone . . Ooooh there it is, what did you do?"

You: "Never mind".

Then you probably wished you've gotten around to implement some form of cache busting technique with the website you'd deployed.

Cache busting with a partial view

Here's how to do some cache busting using a partial view. To get ready: Log in to your favorite CMS go to the Settings section, and create a new partial view.

In the view insert the following code.

@inherits Umbraco.Web.Mvc.UmbracoTemplatePage
@using File = System.IO.File
@{
 Layout = null;

 // Grab the url and find the file
 var url = (string)ViewData["href"];
 var path = Server.MapPath(url);
 var exists = File.Exists(path);

 // Determine file type
 var fileType = Path.GetExtension(path);
 if ("|.png|.gif|.jpg|.jpeg|".Contains(fileType))
 {
 fileType = "img";
 }

 // Check if the file exists
 if (exists)
 {
 // Latest write time of the file
 DateTime date = File.GetLastWriteTime(path);
 // Build an url with a parameter that reflects last write time
 url = string.Format("{0}?v={1}", url, date.Ticks);
 }
 else
 {
 fileType = string.Empty;
 }
}

@switch (fileType)
{
 case ".css":
 <link rel="stylesheet" href="@url" />
 break;
 case ".js":
 <script type="text/javascript" src="@url"></script>
 break;
 case "img":

 break;
 default:
 <!-- No versionable file found at @url -->
 break;
}
The partial view to use for fingerprinting your URL

With this partial view you are able to include CSS, JavaScript and image resources in your code, that'll automatically get versioned. Every time you save the file on the server, it will get a new version parameter on the query string causing your browsers to redownload the resource.

As you see in the partial it's possible to add strings for alt-, width- and height-attributes when using the partial for images, for this I'm using the possibility for adding a ViewDataDictionary as a parameter in the call to Html.Partial. The ViewDataDictionary is a key/value dictionary made available in your Razor script as @ViewData, and it is easily declared when using the Partial view with the Html-helper in a view. The Partial can be used in these ways:

// Stylesheet
@Html.Partial("FingerprintUrl", new ViewDataDictionary{{"href", "/css/site.css"}})

// Javascript file
@Html.Partial("FingerprintUrl", new ViewDataDictionary{{"href", "/scripts/frontpage.js"}})

// Image file
@Html.Partial("FingerprintUrl", new ViewDataDictionary{{"href", "/images/20130831-DSC_0030.jpg"}, {"altTxt", "Bulbs"}, {"width", "960px"}})

How to use the partial above

Bonusinfo

It's now possible to control the caching of your static resources, and you can put this is in your Umbraco project just by creating a partial view using the excellent Umbraco backend.

But you might like to know how you can set up a really, really long caching period for your static ressources since you're now able to force the client-browsers to download the newer version every time you update the file.

This cannot be done from the Umbraco backend, so you might have to ask the webserver administrator to set it for your IIS website, or if you have access to your website filesystem via FTP or RDP or something else, you could just put the following XML-snippet in place:

<system.webServer>
 <staticContent>
 <clientCache cacheControlMode="UseMaxAge" cacheControlMaxAge="365:00:00" />
 </staticContent>
</system.webServer>

Add cache busting to your web.config file

In an ordinary Umbraco website, the <staticContent> node will already be in place, so you should just add the clientCache node to the existing node.

This setting will cache all your static content in the client browsers for 365 days. If you're trying to do cache busting while developing your site in Visual Studio, or just want to do this using a proper HtmlHelper function, you can read my take on cache busting with the HtmlHelper.

That's it

Have a nice holiday season, and while you're away from your computer why not Bust a Move instead.
Get More Out of Umbraco Using Server-Side Caching Strategies
— by Kevin Giszewski
Umbraco has a wonderful way of keeping visitors to our sites happy by leveraging caching of published content. Each property on every document gets saved to the cache and can be served lightning fast as discrete pieces of data. This is usually just fantastic for use on most sites and visitors will be blissful. However a lot of sites I build have fairly complex data models which have to be constructed from the bits and pieces of data cached into the Umbraco.config file. After each request the models are discarded and the process repeats for each subsequent visitor. Add some decent traffic and the shear lookup and business logic processing can begin to tax the CPU. Ramp up the traffic a bit more and the site can become unresponsive.

So what can be done to avoid CPU spikes?

Just get a bigger/faster server right? Well before you scale with brute force you should consider refactoring your code to eliminate bottlenecks. On one particular site I ran the built-in Umbraco Profiler along with the Visual Studio 2012 profiler to find bottlenecks. After deciding that the operation causing the trouble couldn't be refactored to improve performance (due to business rules) and refactoring the ones that could be optimized, I came up with three caching strategies to overcome the server spikes:

1. The Built-in Umbraco CachedPartial()

Umbraco has a built-in partial cacher which can easily cache a partial by page, by member and expire after a given amount of time. This is wonderful for a lot of uses where the page does not need to be dynamic past page\member combinations. However the particular site I was building needed to be cached by city\state which added the need for a custom key to be passed to Umbraco which presently does not allow for.

2. Custom Partial Cache

So since the built-in partial cacher didn't meet my needs, I examined the core and quickly put together my own cacher. My cacher then globbed together visitors by city\state and kept everyone visiting quickly. I was able to determine my own rules for cache clearing and which partials were cached and which were not. For this example, the user's current location is held in a "User" object.

This snippet is my custom cacher which was built based on the Umbraco Core source:

//the custom cacher

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Web;
using System.Web.Caching;
using System.Web.Mvc;
using System.Web.Mvc.Html;
using System.Web.Script.Serialization;
using System.Text.RegularExpressions;
using Umbraco.Core;
using Umbraco.Core.Logging;
using Umbraco.Web;
using MyConstants;

namespace MyProject.Umbraco.Extended
{
 public static class PartialCacher
 {
 //an extension method is created to be used in the views
 public static IHtmlString MyCachedPartial(
 this HtmlHelper htmlHelper,
 string partialViewName,
 object model,
 int cachedSeconds,
 ViewDataDictionary viewData = null,
 string customKey = "",
 bool logPartial = false
)
 {

 //the key will determine the uniqueness of the cache
 //the key ends up looking like this {prefix-url-customkey}
 var cacheKey = new StringBuilder();
 cacheKey.Append(MyConstants.PARTIAL_CACHE_PREFIX);

 cacheKey.Append(HttpContext.Current.Request.Url);

 if(customKey != "")
 cacheKey.Append("-" + customKey);

 var finalCacheKey = cacheKey.ToString().ToLower();

 if(logPartial)
 LogHelper.Info<IHtmlString>(partialViewName + " Partial Cacher Key=> " + finalCacheKey);

 //this code was lifted from the Umbraco Core and does the actual caching/retrieval of html
 return ApplicationContext.Current.ApplicationCache.GetCacheItem(
 finalCacheKey,
 CacheItemPriority.NotRemovable, //not removable, the same as macros (apparently issue #27610)
 null,
 new TimeSpan(0, 0, 0, cachedSeconds),
 () => htmlHelper.Partial(partialViewName, model, viewData));
 }
 }

The Custom Partial Cacher

Using the Custom Partial Cacher in a view is easy:

//usage in view
@Html.MyCachedPartial("MyView", new MyModel(), 86400, null, User.CurrentLocation.City + "-" + User.CurrentLocation.State)
View Usage

Then of course we have to come up with rules on when to clear it. For my needs I cleared it every time document was published:

//clear cache on publish
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using Umbraco.Core;
using Umbraco.Core.Models;
using Umbraco.Core.Logging;
using Umbraco.Core.Publishing;
using Umbraco.Web;
using umbraco.interfaces;

namespace MyProject.Umbraco.Extended
{
 public class PublishingRules : ApplicationEventHandler
 {
 protected override void ApplicationStarting(UmbracoApplicationBase umbracoApplication, ApplicationContext applicationContext)
 {
 base.ApplicationStarting(umbracoApplication, applicationContext);

 PublishingStrategy.Published += PublishingStrategy_Published;
 }

 void PublishingStrategy_Published(IPublishingStrategy sender, global::Umbraco.Core.Events.PublishEventArgs<IContent> e)
 {
 //we will clear the cache on each publish
 //the ClearCacheByKeySearch method clears cache items starting with the string provided.
 ApplicationContext.Current.ApplicationCache.ClearCacheByKeySearch(MyConstants.PARTIAL_CACHE_PREFIX);
 LogHelper.Info<PublishingRules>("Partial Cache cleared due to publish.");
 }
 }
}
How to Clear the Cache

3. Singleton Cache

Finally, if you'd like to build a cache that works in views AND the backoffice, you could always press a Singleton (or several) into service. I've set up many Singletons to represent the site settings node, pools of data and slow loading view models. What happens here is a lazy lookup cache is loaded on first usage of the data. The data is then cleared based on any rules you decide. As you see in my example, a complex expensive data object could be lazy loaded on first usage, then each subsequent request would simply just use the cached data. I've taken care to make the Singleton thread-safe by using a double-check lock. The best part is this Singleton cache can be cleared and rebuilt as needed.

The Singleton Cache:

//the Singleton Cache
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using Umbraco.Core.Models;
using Umbraco.Web;
using Umbraco.Core.Logging;

namespace MyProject.Umbraco.Extended
{
 //the Singleton class
 public sealed class MyHighLevelCache
 {
 private static volatile MyHighLevelCache instance;
 private static object padLock = new Object();

 private MyHighLevelCache() { }

 //this is what we will cache
 public SomeOtherwiseExpensivelyCreatedObject MyCachedData
 {
 get;
 private set;
 }

 //this is the magic
 public static MyHighLevelCache Instance
 {
 get
 {
 if (instance == null)
 {
 //thread safety
 lock (padLock){

 if (instance == null)
 {
 instance = new MyHighLevelCache();

 //this is where you will build your data once instead of looking it up and building it on each request
 MyCachedData = new SomeOtherwiseExpensivelyCreatedObject();

 LogHelper.Info<MyHighLevelCache>("MyHighLevelCache Created");
 }
 }
 }
 return instance;
 }
 }

 public void ClearCache()
 {
 if(instance != null){

 //thread safety
 lock(padLock){

 if(instance != null){
 LogHelper.Info<MyHighLevelCache>("MyHighLevelCache Cleared");
 instance = null;
 }
 }
 }
 }
 }
}
The Singleton Cache

You can literally use this wherever you need and it will lazy load the data and persist it until you clear it:

///usage, can be used on views or in other code
MyHighLevelCache.Instance.MyCachedData.Whatever;
Use anywhere in your code

Of course if your data doesn't change, then you don't need to do this; but dynamic CMS's need to update from time to time:

//clear cache usage
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using Umbraco.Core;
using Umbraco.Core.Models;
using Umbraco.Core.Logging;
using Umbraco.Core.Publishing;
using Umbraco.Web;
using umbraco.interfaces;

namespace MyProject.Umbraco.Extended
{
 public class PublishingRules : ApplicationEventHandler
 {
 protected override void ApplicationStarting(UmbracoApplicationBase umbracoApplication, ApplicationContext applicationContext)
 {
 base.ApplicationStarting(umbracoApplication, applicationContext);

 PublishingStrategy.Published += PublishingStrategy_Published;
 }

 void PublishingStrategy_Published(IPublishingStrategy sender, global::Umbraco.Core.Events.PublishEventArgs<IContent> e)
 {
 //we are going to clear our cache if someone publishes a 'SomethingIamCaching' document type.
 var clearMyHighLevelCache = false;

 foreach (var node in e.PublishedEntities)
 {
 if (node.ContentType.Alias == "SomethingIamCaching")
 {
 clearMyHighLevelCache = true;
 }
 }

 //let's only clear the cache once instead of per document
 if (clearMyHighLevelCache)
 {
 MyHighLevelCache.Instance.ClearCache();
 }
 }
 }
}
Clear Singleton Cache Usage

Summing It Up

Even though Umbraco does cache the data and keeps us insulated from DB requests, large datasets will eventually result in longer lookup and load times as models are pieced together for each request. After using a mix of the caching strategies outlined here, the CPU spikes on the server disappeared during high volume loads. Caching your data is especially helpful if the data has a large flat tree structure or there is an unavoidable expensive operation. Just be mindful of when to clear the cache and when not to because clearing the cache too often negates the benefits.

Please note that these caching strategies cache into memory as opposed to a physical disk. So make sure you have a little headspace with respect to RAM. The amount of RAM needed (not much) vs CPU savings (a lot) can be dramatic.

A Note About Load-Balancing

I've used option 2 & 3 with success in a load-balanced environment. The trick to that is sending a signal from the admin server to the load-balanced servers. I overcame this by setting up surface controller actions that cleared the local caches. The admin node iterated through the <server/> nodes of the UmbracoSettings.config and visited the url's as needed (maybe on publish or whatever). My colleague Tom Fulton has reported a bug for option 1 in load balanced situations, you can find the details here: http://issues.umbraco.org/issue/U4-2879

Thank you to Tom Fulton for his feedback and contributions to this article!

For more information:

CachedPartial - http://our.umbraco.org/documentation/Reference/Mvc/partial-views
Profiling - http://msdn.microsoft.com/en-us/library/ms182372.aspx
Singletons - http://msdn.microsoft.com/en-us/library/ff650316.aspx
How GitHub Snippets for Umbraco 7 was built
— by Warren Buckley
Hello all,
So for today's advent calendar surprise I will be writing about how I recently built the GitHub Snippets for Umbraco 7 package and what issues or problems I came across and learnt along the way.

So first things first, let's get a bit familiar with the package itself.

What are we building?

This package allows you to point to a GitHub repository or use the default repository that comes with the package to allow you to insert Razor snippets into the Partial view or Template Editor in Umbraco. It's as simple as that.

Let's take a quick look of what it looks like in action:

Online Video Clip

Creating the Button

 [image: Here you can see the new button we have added to the Umbraco Backoffice]

 Here you can see the new button we have added to the Umbraco Backoffice

The first step of this is creating an additional button in the Umbraco backoffice called Snippets which when clicked will show us our new dialog only on the Partial View or Template Editor page/s.

So how do we go about creating this new button? It's simpler than you think, let's look at the code snippet and then step through it.

using System;
using System.Web.UI;
using System.Web.UI.WebControls;
using Umbraco.Core;
using umbraco.presentation.masterpages;
using umbraco.uicontrols;

namespace GitHubSnippets
{
 public class StartupHandlers : IApplicationEventHandler
 {
 public void OnApplicationInitialized(UmbracoApplicationBase umbracoApplication, ApplicationContext applicationContext)
 {
 //throw new NotImplementedException();
 }

 public void OnApplicationStarting(UmbracoApplicationBase umbracoApplication, ApplicationContext applicationContext)
 {
 //throw new NotImplementedException();
 }

 public void OnApplicationStarted(UmbracoApplicationBase umbracoApplication, ApplicationContext applicationContext)
 {
 //When Umbraco Has Started Up...
 //Hook into the UmbracoPage Load event - which is any Umbraco backoffice page
 umbracoPage.Load += umbracoPage_Load;
 }

 void umbracoPage_Load(object sender, EventArgs e)
 {
 //Cast sender as an Umbraco Page object
 var pageReference = (umbracoPage)sender;

 //Get the path of the current page
 var path = pageReference.Page.Request.Path.ToLower();

 //Check if the path of the page ends in either of the following...
 if (path.EndsWith("settings/views/editview.aspx") == true || path.EndsWith("settings/edittemplate.aspx"))
 {
 //Try & get body panel control from the page (as still .NET page)
 var c2 = GetPanel1Control(pageReference);

 //If we have found it then...
 if (c2 != null)
 {
 //Cast the control we found as an Umbraco Panel object
 var panel = (UmbracoPanel)c2;

 //This is the Javascript we want to run when our button is clicked
 //Including what happens when the dialog closes & invokes our callback
 var javascript = @"UmbClientMgr.openAngularModalWindow({
 template: '/app_plugins/snippets/snippet-dialog.html',
 callback: function(data) {
 var snippet = JSON.parse(data.code);
 UmbClientMgr.contentFrame().UmbEditor.Insert(snippet, '');
 top.UmbSpeechBubble.ShowMessage('success', 'Snippet Inserted', 'Yipee you have sucessfully inserted a snippet from GitHub called: ' + data.name);
 }
 });";

 //Lets create a new button and add it to the panel control
 var snippetBtn = panel.Menu.NewButton(-1);
 snippetBtn.Text = "Insert Snippet";
 snippetBtn.ToolTip = "Insert Snippet";
 snippetBtn.ButtonType = MenuButtonType.Primary;
 snippetBtn.Icon = "code";
 snippetBtn.OnClientClick = javascript;

 }
 }

 }

 //Get the body panel control
 private Control GetPanel1Control(umbracoPage up)
 {
 var cph = (ContentPlaceHolder)up.FindControl("body");

 return cph.FindControl("body_Panel1_container");
 }
 }
}
This snippet allows you to add a button to the Umbraco backoffice

So the snippet above will add a button to the Umbraco backoffice using the UmbracoPage Load event and check if the page URL is the template of partial view editor, if so it will add our Add Snippet button.

As you can see the button has some inline JavaScript that is run when it is clicked. This was the hardest part for me and involved me trawling through the Umbraco source on GitHub and asking lots of questions to lead Umbraco Belle developer Per Ploug on twitter.

But the most important part from the JavaScript is the UmbClientMgr.openAngularModalWindow() function that has a path to our Angular HTML file for the modal and a callback function that is invoked when the modal is posted back or a selection has been made, in our case a snippet has been selected.

Inside the callback you will see two further calls that took me a few hours to find, but allows me to insert the snippet into the code editor and then one to display a nice friendly notification message.

UmbClientMgr.contentFrame().UmbEditor.Insert() is the function that allows me to inser the code snippet and the top.UmbSpeechBubble.ShowMessage() allows me to show a nice new notification. Some of these calls are legacy but allows a WebForms page like the template editor to run the new Angular Services like NotificationService by using an old function such as UmbSpeechBubble.ShowMessage().

Creating the WebAPI Controller to fetch GitHub Snippets

So now onto the next part and look at how I built the WebAPI that the Angular Modal uses to go and fetch the snippets from the GitHub repository using GitHub's API. Lets dive straight into the Controller code and review it afterwards.

using Umbraco.Web.Mvc;
using Umbraco.Web.WebApi;

namespace GitHubSnippets.Controllers
{
 // Web API Calls can be access from this URL
 // /umbraco/snippets/*MethodName*
 [PluginController("Snippets")]
 public class GitHubController : UmbracoAuthorizedApiController
 {
 private static string _baseAPIUrl = "https://api.github.com";

 /// <summary>
 /// Get's the respository user from config file
 /// </summary>
 public string GetRepositoryUser()
 {
 //Returns a value from our settings config file
 return Settings.GetSetting("RepositoryUser");
 }

 /// <summary>
 /// Get's the respository name from config file
 /// </summary>
 /// <returns></returns>
 public string GetRepositoryName()
 {
 //Returns a value from our settings config file
 return Settings.GetSetting("RepositoryName");
 }

 /// <summary>
 /// Fetch contents of a specific file or folder from a GitHub Repo
 /// </summary>
 /// <param name="path">The path to the file or folder to request</param>
 public async Task<JToken> GetContent(string path)
 {
 //Get path from parameter
 //If the path length is greater than 1 AND it starts with a /
 if (path.Length > 1 && path.StartsWith("/"))
 {
 //Lets remove the starting /
 path = path.TrimStart('/');
 }

 //Get Settings from config file
 var repoUser = Settings.GetSetting("RepositoryUser");
 var repo = Settings.GetSetting("RepositoryName");

 //Format API Url to request
 var apiUrl = string.Format("{0}/repos/{1}/{2}/contents/{3}", _baseAPIUrl, repoUser, repo, path);

 //Do an async call to the GitHub API
 HttpClient client = new HttpClient();
 HttpResponseMessage response = await client.GetAsync(apiUrl);

 //If not success code throw a 404 not found
 if (!response.IsSuccessStatusCode)
 {
 throw new HttpResponseException(HttpStatusCode.NotFound);
 }

 //The remote JSON we recieve - gets it as a string
 //Need to convert it to a JSON object
 var content = await response.Content.ReadAsAsync<JToken>();

 //Return the JSON
 return content;
 }

 /// <summary>
 /// Fetch decoded contents of a specific file from a GitHub Repo
 /// </summary>
 /// <param name="path">The path to the file or folder to request</param>
 public async Task<string> GetContentDecoded(string path)
 {
 //Get path from parameter
 //If the path length is greater than 1 AND it starts with a /
 if (path.Length > 1 && path.StartsWith("/"))
 {
 //Lets remove the starting /
 path = path.TrimStart('/');
 }

 //Get Settings from config file
 var repoUser = Settings.GetSetting("RepositoryUser");
 var repo = Settings.GetSetting("RepositoryName");

 //Format API Url to request
 var apiUrl = string.Format("{0}/repos/{1}/{2}/contents/{3}", _baseAPIUrl, repoUser, repo, path);

 //Do an async call to the GitHub API
 HttpClient client = new HttpClient();
 HttpResponseMessage response = await client.GetAsync(apiUrl);

 //If not success code throw a 404 not found
 if (!response.IsSuccessStatusCode)
 {
 throw new HttpResponseException(HttpStatusCode.NotFound);
 }

 //The remote JSON we recieve - gets it as a string need to return a nice JSON object
 var content = await response.Content.ReadAsAsync<JToken>();

 //Decode the base64 content of the file using the helper
 var decodedContent = base64Decode(content["content"].ToString());

 return decodedContent;
 }

 /// <summary>
 /// http://forums.asp.net/t/645898.aspx
 /// </summary>
 /// <param name="data">The original base64 string to decode</param>
 /// <returns>Decoded string</returns>
 internal string base64Decode(string data)
 {
 try
 {
 System.Text.UTF8Encoding encoder = new System.Text.UTF8Encoding();
 System.Text.Decoder utf8Decode = encoder.GetDecoder();

 byte[] todecode_byte = Convert.FromBase64String(data);
 int charCount = utf8Decode.GetCharCount(todecode_byte, 0, todecode_byte.Length);
 char[] decoded_char = new char[charCount];
 utf8Decode.GetChars(todecode_byte, 0, todecode_byte.Length, decoded_char, 0);

 string result = new String(decoded_char);
 return result;
 }
 catch (Exception e)
 {
 throw new Exception("Error in base64Decode" + e.Message);
 }
 }
 }
}

The points to take away from this code snippet is that firstly I have inherited my class from UmbracoAuthorizedApiController this allows only users logged into the Umbraco back office to make a call to this WebAPI, as we don't just want anyone to be able to fetch our GitHub Snippets publically. So inheriting from this class allows Umbraco to deal with the authentication for us.

With that part done the next thing to know is that I have applied an attribute [PluginController("Snippets")]. What this does allows Umbraco to detect in our DLL once this is built, that this a controller that needs to be registered and automatically routed for us. So all of my WebAPI calls can be done by going to http://site.co.uk/umbraco/snippets/methodName

The final part to learn from this code snippet GetContent() and GetDecodedContent() call the remote GitHub API to go and fetch the remote JSON from their API. I won't go into too much detail here as hopefully the code is commented enough for you to understand what is happening. But in a nutshell you just need to know it's getting JSON from GitHub's API and returning it for us.

Creating the Modal HTML View & Angular Components

 [image: Here you can see the new dialog listing out GitHub snippets inside it]

 Here you can see the new dialog listing out GitHub snippets inside it

This next step involves a few components. It first includes the HTML for the modal with Angular directives such as ng-repeat to loop through our list of Snippets from the WebAPI call we make, along with an Angular resource and controller JavaScript files and finally a JSON manifest file to get our JavaScript files picked up by the Umbraco back office.

Lets start off with the Angular Resource JavaScript file, as this file goes and fetches data from our WebAPI we have just created.

angular.module("umbraco.resources")
 .factory("snippetResource", function ($http) {
 return {
 getSnippets: function (path) {
 return $http.get("/umbraco/snippets/github/GetContent?path=" + path);
 },

 getSnippetDecoded: function (path) {
 return $http.get("/umbraco/snippets/github/GetContentDecoded?path=" + path);
 },

 getRepoUser: function () {
 return $http.get("/umbraco/snippets/github/GetRepositoryUser");
 },

 getRepoName: function () {
 return $http.get("/umbraco/snippets/github/GetRepositoryName");
 }
 };
});

In this Angular Resource file you can see I have a few functions such as getSnippets, getSnippetDecoded which uses Angulars $http helper to fetch the remote JSON from our WebAPI we created.

Additionally you can see that I have given it a name of snippetResource so that it can be used in our Angular Controller file.

The next part of the puzzle is the Angular Controller needed to pass data to our HTML view for the modal.

angular.module("umbraco").controller("Snippets.GitHubController", function ($scope, snippetResource) {

 //Repository Name & User
 $scope.repoUser = snippetResource.getRepoUser();
 $scope.repo = snippetResource.getRepoName();

 //Get Snippets from Resource (API)
 snippetResource.getSnippets('/').then(function (snippets) {
 $scope.snippets = snippets;
 });

 //Insert Snippet - button click
 $scope.insertSnippet = function (selectedSnippet) {

 var selectedSnippetPath = selectedSnippet.path;

 //Get the snippet to decode from the Resource aka API
 snippetResource.getSnippetDecoded(selectedSnippetPath).then(function (snip) {

 //Create a snippet object to pass through to callback
 var snippet = {
 name: selectedSnippet.name,
 code: snip.data
 };

 //Debugging
 console.log(snippet);

 //Submit dialog - fires callback event for open dialog
 $scope.submit(snippet);
 });

 };

});

The first part is that we need to register our controller in the Umbraco module or app as its also known as in Angular. The controller name Snippets.GitHubController is what we will need to use in our HTML view for our modal.

The next part is that I am registering the snippetResource in the controller initialisation, so that I can use it in the controller to talk to our WebAPI controller to retrieve JSON. The first two lines is getting the repository name and repository user from our WebAPI via the snippetResource and defining them to properties on the $scope so we can use them easily in our view.

We are using the snippetResource to then fetch all the snippets and wait until it's returned to then assign the JSON it recieves from the WebAPI to a property called snippets on the $scope. So that we can easily loop & iterate over it in our modal view.

The final part of this controller is to create a function called insertSnippet that takes the selected snippet JSON object and then call the API to get the decoded contents of the selected snippet from our Web API.

I then create a new JSON object and assign the snippet contents and the snippet name and pass that to a function called $scope.Submit() which closes the dialog and will then invoke the callback function we created for when our main insert snippet button was clicked. So this will allow the snippet JSON object to be used in the callback for it to be inserted into the code editor and the notification to be shown.

Next is to create our modal HTML view and wire it up to our Angular controller.

<div class="umb-panel" ng-controller="Snippets.GitHubController">
 <div class="umb-panel-footer">
 <div class="btn-toolbar umb-btn-toolbar pull-right">
 <a href class="btn btn-link" ng-click="close()">
 <localize key="cancel" />

 </div>
 </div>

 <div class="umb-modalcolumn-header">
 <div class="umb-el-wrap umb-panel-buttons">
 <div class="span6">
 <div class="form-search">
 <i class="icon-search"></i>
 <input type="text" ng-model="searchTerm" class="umb-search-field search-query" placeholder="Filter...">
 </div>
 </div>
 </div>
 </div>

 <div class="umb-panel-body umb-scrollable">
 <div class="tab-content umb-control-group">
 <div class="umb-pane">
 <h4>GitHub Snippets</h4>
 <h5>{{ repoUser.data }}/{{ repo.data }}</h5>

 <ul class="unstyled">
 <li ng-repeat="snippet in snippets.data | filter: searchTerm" class="clearfix">
 {{ snippet.name }}

 <i class="icon icon-code"></i> Insert Snippet

 </div>
 </div>
 </div>
</div>

This is the HTML for the modal view, I had to take a look at a few modals in the Umbraco source code to see what markup and CSS classes was expected for it to look like a neat modal and to fit in with the rest of the Umbraco Belle user interface.

The points to take away from this is that the first div has an attribute called ng-controller with the value of Snippets.GitHubController which is the name of our controller we defined in the previous file. I won't go into too much depth & detail here and this is relatively basic Angular View that is fetching & displaying values from the $scope in our controller and iterating over a loop for our snippets property on the $scope.

You can see inside my loop of the snippets is that I have a button that has an attribute of ng-click with the value of insertSnippet(snippet) that calls our function in our controller. Which goes and fetches the content of the selected snippet via the API and then closes the dialog, inserts the snippet & shows the notificiation.

We are almost on the home straight now, the final piece of the jigsaw puzzle is to create a package.manifest JSON file in order to register our two Javascript files into the Umbraco application.

{
 propertyEditors: [],

 javascript: [
 '~/App_Plugins/Snippets/Snippets.Github.Controller.js',
 '~/App_Plugins/Snippets/Snippet.Resource.js'
]
}

The one thing to note is that our JavaScript & HTML modal needs to live in Umbraco's plugin folder which is /App_Plugins in there I have created a folder called Snippets where the following files need to live:

	/App_Plugins/Snippets/Snippet.Resource.js

	/App_Plugins/Snippets/Snippets.GitHub.Controller.js

	/App_Plugins/Snippets/snippet-dialog.html

	/App_Plugins/Snippets/package.manifest

With these files in place and our code compiled into a DLL so the button in our event handler and our WebAPI we are good to go to test this out.

Final Conclusion

 [image: Here you can see the finished snippet inserted into the editor & with a nice neat notification]

 Here you can see the finished snippet inserted into the editor & with a nice neat notification

So now we are all done lets take a look at the finished thing, it's a thing of beauty! Thank you for taking the time out to read this massive post but I hope you have found some useful snippets or pointers for yourself to take away and use in your own projects.

I hope you found today's Umbraco advent calendar was helpful and useful to you all. I look forward to seeing what all you happy Umbraco developers create with Umbraco 7

Well there's only one thing left to say, Happy Christmas & New Year.
Warren x

6 Easy Configuration Tweaks
— by Jeavon Leopold
At Crumpled Dog, we have built up a collection of easy configuration tweaks over the years that can save developers time finding solutions, remove issues for editors and make some front end website performance improvements. We have these configuration tweaks already in place in our internal framework so that every new project has them from the start; all these tweaks are also all included in the Hybrid MVC Framework project.

1. Maximum upload size

By default the maximum file size you can upload to Umbraco is 4Mb, which is easily exceeded by a PDF or Word document. To update the maximum size of files that can be uploaded to your Umbraco installation requires you to edit two different sections of Web.Config.

Within the System.Web section of Web.Config locate the httpRuntime element and add the maxRequestLength attribute. The value of the maxRequestLength attribute is in kilobytes (example is 150Mb)

<httpRuntime requestValidationMode="2.0" enableVersionHeader="false" maxRequestLength="153600" />

Then within the system.webServer section of Web.Config check to see if you already have a security element, if you do, add only the inner elements from the snippet below, if you don't already have one add the entire snippet. The value of maxAllowedContentLength is in bytes (example is 150Mb)

<!-- Max file size limitation -->
<security>
 <requestFiltering>
	<requestLimits maxAllowedContentLength="157286400" />
 </requestFiltering>
</security>

2. Maximum JSON serialization length

This one doesn't apply to Umbraco v7

One day you may find that Multi-node tree picker has suddenly stopped showing any content within the tree, this is possibly caused by your website having grown to the point that the maximum JSON length for the ASP.NET AJAX toolkit has been exceeded. This more commonly affects Embedded Content and other third party property editors that use the ASP.NET AJAX toolkit that store significant amounts of data in JSON strings.

Locate the system.web.extensions element, then add the webServices element and the jsonSerialization element within it as shown below. The value of maxJsonLength is the maximum number of characters, the default is 2097152.

<!-- ASPNETAJAX -->
<system.web.extensions>
<scripting>
 <scriptResourceHandler enableCompression="true" enableCaching="true" />
 <webServices>
	<jsonSerialization maxJsonLength="5000000" />
 </webServices>
</scripting>
</system.web.extensions>

3. SVG and other common mime types

By default IIS does not understand what a .svg file is and will not serve any files that have been added by a designer or front end developer, they may spend many hours trying to work out what they have done wrong. Of course you can also add mime types to IIS that will apply to all websites but this isn't possible with all hosting environments so you can easily add the mime types within Web.config.

Locate the staticContent element within the system.webServer section, you should find the .air mime type already there, now you can add the SVG mime type and other commonly added file types such as ttf.

<staticContent>
 <remove fileExtension=".air" />
 <mimeMap fileExtension=".air" mimeType="application/vnd.adobe.air-application-installer-package+zip" />
 <remove fileExtension=".svg" />
 <mimeMap fileExtension=".svg" mimeType="image/svg+xml" />
 <remove fileExtension=".ttf" />
 <mimeMap fileExtension=".ttf" mimeType="font/ttf" /> 	
</staticContent>

4. Static content client caching

When testing your site using Google's PageSpeed to Yahoo's YSlow you may find that you are being told to "Leverage browser caching" and that your images and other static content are being flagged.

[image: Browsercaching]

A cache header is sent to the browser by IIS telling it how long it should keep the asset in its cache before requesting it again; this is easily configured in Web.Config and set to the recommended 7 day minimum.

Locate the staticContent element within system.webServer section and add the below clientCache element (generally below the above Mime types).

<clientCache cacheControlMode="UseMaxAge" cacheControlMaxAge="7.00:00:00" />

5. Static and Dynamic Url Compression

As with the client caching above you may find that your are being told to "Enable compression" by site optimisation tools.

[image: Enablecompression]

When enabled, resources sent to the browser are compressed on the server and then decompressed within the browser therefore minimising the transfer payload between server and browser. In order to use the compression built into IIS, you need to install the Static and Dynamic compression modules. The static module will compress static assets such as images and stylesheets, while the dynamic module will compress the html that is rendered by Umbraco. The dynamic module utilises CPU to perform the compression so you should make sure you have ample server power available on very busy websites.

The modules are installed using the "Turn Windows features on or off" option within control panel or by using the server role manager as shown below:

[image: Iismodule]

Once the modules are installed, add the urlCompression element as shown below within the system.webServer section of Web.config

<urlCompression doStaticCompression="true" doDynamicCompression="true" />

Now all requests from the server will be sent to the browser using compression.

6. Url character replacement

Google's spider doesn't like them and they certainly don't look nice, having a URL with unusual characters in it just isn't a good idea. Umbraco v6 (and v4) come with a decent default list however there are plenty that need adding.

Umbraco v6.2 and v7 have a new built-in character replacement system, so Umbraco will now remove unusual characters automatically, however you can override certain characters by adding the urlReplacing section to your umbracoSettings.config as existed in earlier versions. An example of when this might be useful are currency symbols below, by default Umbraco v6.2+ would remove the symbol entirely, for example, a node name of "Share price reaches £400" would become /share-price-reaches-400/ by adding the pound replacement it would become /share-price-reaches-gbp400/

[image: Chars]

Click here for a txt file of the above

For a talk through of all of these tweaks, more agency best practice and a demo of the hybrid MVC Framework you can watch Jeroen Breuer and myself at the 2013 UK Umbraco Festival here.
Mapping Umbraco content to POCOs for strongly typed views
— by Darren Ferguson
This article assumes you are familiar with using MVC views for Umbraco templates.

I'm not in the Umbraco code first camp. I get bored of people rattling on about uSiteBuilder, I just don't need it. At Moriyama we favour uSync for versioning and moving document types. I actually like the back office document type designer for creating my document types - it gives me a sense of structure, volume of document types and allows me to move stuff around quite quickly in a (reasonably) nice UI.

But before all of you code first nutcases start issuing death threats I'll concede one thing. Views against POCOs are much more readable and having proper intellisense is really neat. Also, views over POCOs can be much more readable to non .NET developers.

So although I don't use uSiteBuilder, I do (on occasion) map IPublishedContent to my own POCOs.

Which of the following two ways of outputting a document type property do you think is neater?

@inherits UmbracoTemplatePage

@(Model.Content.GetPropertyValue<string>("SiteName").Trim())
@(Model.Content.As<Article>.SiteName.Trim())

Figure 1: Article is the name of an as yet undefined POCO

Of course you answered the latter!

So how to achieve the latter? Firstly I create my POCOs manually - I don't like code generation (but it is just personal preference OK?)

using System;
namespace MvcApplication1.Poco
{
 public class Article
 {
 public string Title { get; set; }
 public string SiteName { get; set; }
 public DateTime UpdateDate { get; set; }
 }
}
Figure 2: Article is an Example POCO

The POCO has the same properties as your Umbraco document type, either default or custom. In the example above SiteName is a custom document type property.

The next step is to turn IPublishedContent into this POCO which we do with the help of an extension method with the following signature:

using System;
using Umbraco.Core.Models;
namespace MvcApplication1
{
 public static class PocoHelper
 {
 public static T As<T>(this IPublishedContent content) {

 var poco = Activator.CreateInstance<T>();

 }
 }
}
Figure 3: This is a signature for a method to be completed later

I'll come back to the implementation later, this just returns and empty POCO for now, but once complete I can start doing things in my view like:

@inherits UmbracoTemplatePage
@using MvcApplication1
@using MvcApplication1.Poco

@Html.CachedPartial("PageHeader", Model.Content.As<Article>(), 10)

Figure 4: Pass a POCO to a partial in an Umbraco View/Template

That allows me to have partial views that are strongly typed to a POCO like this:

@model MvcApplication1.Poco.Article

<h2>@Model.SiteName was updated on @Model.UpdateDate</h2>

Figure 5: A strongly typed and cached partial view

For some people, doing all of this kind of stuff in the view is a bit mucky, and I agree. Using route hijacking one could do all of my querying and converting before we get to the view (but I have an hour to write this article not a day).

So lastly, the implementation of my extension method:

using System;
using System.Reflection;
using Umbraco.Core.Models;
using Umbraco.Web;

namespace MvcApplication1
{
 public static class PocoHelper
 {
 public static T As<T>(this IPublishedContent content) {

 // Create an empty instance of the POCO
 var poco = Activator.CreateInstance<T>();

 // Discover properties of the poco with reflection
 PropertyInfo[] properties = typeof(T).GetProperties(BindingFlags.Public | BindingFlags.Instance);

 var pocoType = poco.GetType();

 foreach (PropertyInfo propertyInfo in properties)
 {
 var contentType = content.GetType();
 if (content.GetType().GetProperty(propertyInfo.Name) != null)
 {
 // It is a default propery - get the value with refelection
 var propertyValue = contentType.GetProperty(propertyInfo.Name).GetValue(content, null);
 pocoType.GetProperty(propertyInfo.Name).SetValue(poco, propertyValue, null);
 }
 else
 {
 // it is a doctype property - ask Umbraco for the value
 var propertyValue = content.GetPropertyValue(propertyInfo.Name);
 pocoType.GetProperty(propertyInfo.Name).SetValue(poco, propertyValue, null);
 }
 }

 return poco;
 }
 }
}
Figure 6: Implementation of IPublishedContent to your POCO

Yes it is quite techie, but it is write once and you never see it again. Our real implementation of this is a bit more complex than that above.

We use the MemoryCache to check whether an object is available before constructing it. Before I conclude it is also worth mentioning that you'd probably need to work with Property Editor Convertors for more complex document type properties such as pickers.

So anyway, I've completely failed to put a festive twist on this article, It would have been hard to do (I guess I could have called a POCO property Santa or something). Hopefully it fills you with festive cheer anyway and I hope you've enjoyed the read.

Thanks to the guys behind 24days.in for the opportunity to post here. I'll write something up on using this technique combined with route hijacking and the MemoryCache on my blog in the new year.
The worlds friendliest post on getting started with Examine
— by Rasmus Fjord
Everytime I read the word Examine or Lucene it is always combined with doing some crazy data extravaganza that sounds magical but requires 2 strong men, a Tesla Roadster, some squirrels(N amount) and 400 man-hours to get done.

So once upon a time I got a call from a customer, "We want some simple search thingy on our page", and I was like "sure thing we got packages for that". I installed a brilliant package and they were happy, until they figured out they wanted handling for typos, when their customers searched for products and the speed was also so-so because of the node amount. So I set out to find another way around, and I found it by doing something quite simple with examine.

I'm no examine/lucene ninja, but I hope my 2 cents here can get people started on playing around on their own because with examine there is so many possibilities to use your content (sorting tons of content based on different parameters, searching etc.).

So the idea with this is giving you a little intro to what is needed to get started with examine with a very hands-on aproach :)

Examine (based on Lucene) is an indexing/search engine that takes our content/data and puts it into a "phonebook" of sorts(index), so that we can search/lookup through it with blazing speed even on large amount of data/content.

So we want to do 2 things, first we are gonna have a look on the configuration (what sort of stuff do we want in our index?), secondly we want to make it searchable.

Part 1 : The configuration

So in every Umbraco installation there is a folder called "Config". Its filled with (you guessed it) configuration files that does tons of different stuff to your solution, and don't worry it's not dangerous to play around in here.

Two of these files we want to pop open and poke around inside.

/Config/ExamineIndex.config

/Config/ExamineSettings.config

ExamineIndex.config

In this file we want to define a new indexset, and the indexset contains the info on which doctypes and fields we want to index. For the example it could look something like this:

 <IndexSet SetName="MySearch" IndexPath="~/App_Data/ExamineIndexes/MySearch/">
 <IndexAttributeFields>
 <add Name="id" />
 <add Name="nodeName"/>
 <add Name="updateDate" />
 <add Name="writerName" />
 <add Name="nodeTypeAlias" />
 </IndexAttributeFields>
 <IndexUserFields>
 <add Name="bodyText"/>
 <add Name="siteName"/>
 </IndexUserFields>
 <IncludeNodeTypes>
 <add Name="umbHomePage" />
 <add Name="umbNewsItem" />
 <add Name="umbTextPage" />
 </IncludeNodeTypes>
 </IndexSet>

This block is just placed under the other <indexset>.

SetName is the reference, or the alias if you like that we want to remember when were gonna call the index from our providers.

IndexAttributeFields defines all the default Umbraco fields that a node contains such as name, nodetype and more.

IndexUserFields is the alias of the custom fields you have added to your doctypes.

IncludeNodeTypes is the alias of the doctypes you want to search through.

So now we have defined an indexset that takes 3 doctypes and looks for 2 properties. This is what we can search later on.

That was one file down and one to go.

ExamineSettings.config

So inside the examinesettings.config file we want to do 2 things, and that's adding a few providers (Index and search provider). These two handles, you guessed it, indexing our data/content and giving us the option to search it.

Index provider

 <add name="MySearchIndexer" type="UmbracoExamine.UmbracoContentIndexer, UmbracoExamine"
 supportUnpublished="false"
 supportProtected="true"
 interval="10"
 analyzer="Lucene.Net.Analysis.Standard.StandardAnalyzer, Lucene.Net"
 indexSet="MySearch"/>

Paste it in just before

</providers>

</ExamineIndexProviders>

We have different settings here, should it index unpublished or protected nodes? and how often. One thing that is important is the IndexSet equals the Index SetName that we defined inside examineindex.config right before.

Search provider

The next thing we need to config is the search provider.

 <add name="MySearchSearcher" type="UmbracoExamine.UmbracoExamineSearcher, UmbracoExamine"
 analyzer="Lucene.Net.Analysis.Standard.StandardAnalyzer, Lucene.Net" indexSet="MySearch" enableLeadingWildcards="true"/>

This should just be added right before

</providers>
 </ExamineSearchProviders>

Again some settings on how the search works, though not something we will talk about since we just run with defaults, but again we want to reference the IndexSet Name and enable leading wildcards.

If you want to dive deeper into the different params and get a better understanding for all this crazyness I recommend that you read this one :

http://umbraco.com/follow-us/blog-archive/2011/9/16/examining-examine.aspx

 Part 2 : Let the search begin

So now we have configured all the stuff that we need and can start by cooking up a new razor macro called something as magical as "Search" which we can embed into our awesome search template.

So now we want to create a SIMPLE search that can handle some spelling mistakes and does the "basic" job we want.

First solution
So lets look at how this can be done in a simple example first:

@inherits umbraco.MacroEngines.DynamicNodeContext
@using Examine.LuceneEngine.SearchCriteria
@{
 if (!string.IsNullOrEmpty(Request.QueryString["search"]))
 {

 //Fetching what eva searchterm some bloke is throwin' our way
 var q = Request.QueryString["search"];

 //Fetching our SearchProvider by giving it the name of our searchprovider
 var Searcher = Examine.ExamineManager.Instance.SearchProviderCollection["MySearchSearcher"];

 //Searching and ordering the result by score, and we only want to get the results that has a minimum of 0.05(scale is up to 1.)
 var searchResults = Searcher.Search(q, true).OrderByDescending(x => x.Score).TakeWhile(x => x.Score > 0.05f);

 //Printing the results

 @foreach (var item in searchResults)
 {
 var node = Model.NodeById(item.Fields["id"]);

 @node.Name

 }

 }
}

 Just to do a quick run down the code we 3 things.

We fetch the term some dude just searched for from our query. We select which searchprovider to use (the one we setup in the config files remember), and last we search, oh yeah and print out (4 things sorry).

When we do the "search" we ask for results ordered by "score". Everytime we do something with Lucene, it's being returned with a score on how close it was to our search. I'm also asking it that we only want the items above a specific threshold so we ensure some kind of quality to our results.

So now when the customer searches for "geting started" instead of "getting started" it still finds the results.

Quite simple.

Little bonus: Also notice that we have something called "fields" where I'm fetching the ID of the node. But inside fields we can add all sorts of properties, so if you just needed to display the name of a page and the URL, we don't need to look up the node to fetch it, we could save some machine powa' by just adding the properties to the list of fields. That is what we did inside examineindex.config.

So this one would probably do it for most simple sites but let's say you wanna dive a bit deeper, you want to control which fields it should search through, and if some fields are more important than others.

Second solution

Let's go a bit deeper down the rabbit hole with this one, so let's do something similar just where we have a few more options.

In Lucene we can build our own queries for content. This can be done in 2 ways, and I will show the "Fluent" (chaining) way, while the other one is writing raw Lucene queries (you can look into this through some of the links at the bottom).

So this next example is quite similar to the first one but instead we are controlling which fields we wanna look into and if a field is more important.

@inherits umbraco.MacroEngines.DynamicNodeContext
@using Examine.LuceneEngine.SearchCriteria
@{
 if (!string.IsNullOrEmpty(Request.QueryString["search"]))
 {

 //Fetching what eva searchterm some bloke is throwin' our way
 var q = Request.QueryString["search"].Trim();

 //Fetching our SearchProvider by giving it the name of our searchprovider
 var Searcher = Examine.ExamineManager.Instance.SearchProviderCollection["MySearchSearcher"];

 var searchCriteria = Searcher.CreateSearchCriteria(Examine.SearchCriteria.BooleanOperation.Or);
 var query = searchCriteria.Field("nodeName", q.Boost(3)).Or().Field("bodyText", q.Fuzzy());

 //Searching and ordering the result by score, and we only want to get the results that has a minimum of 0.05(scale is up to 1.)
 var searchResults = Searcher.Search(query.Compile()).OrderByDescending(x => x.Score).TakeWhile(x => x.Score > 0.05f);

 //Printing the results

 @foreach (var item in searchResults)
 {
 var node = Model.NodeById(item.Fields["id"]);

 @node.Name

 }

 }
}

So the difference here is that we can now control which fields we look at.

We do this trough something we call a SearchCriteria. Inside the SearchCriteria we tell which fields we want to look at like "nodeName" and bodyText.

Also we are telling the search that if it finds something in nodeName it's more important than bodyText since we are giving it a "boost". To a boost we add a value to buff the "score" of a resultitem.

We are also saying that we want to look at the bodyText, and we are adding a "fuzzy" option to it. This tells the search it should match on items that "looks like it". This is where we get some sort of spelling help.

The whole idea here is that we can keep on adding fields, and also if we want something specific to be true (could be inside a certain date range, only look at specific nodetypes etc.).

Wanna know more ?

 [image:]

 You should really take a look at these pages then :

http://umbraco.com/follow-us/blog-archive/2011/9/16/examining-examine.aspx

https://github.com/Shandem/Examine/wiki

Also ive created a small demo solution you can download and run, it's of course based on Umbraco 7 and one of the new brilliant starter kits :) If you download it you can just run the solution and open up /search

https://bitbucket.org/Rasmusfjord/24days.in-umbraco-lucene-demo/wiki/Home

Hope this will get you going on your way with Examine, now go drink some danish "gløgg" and start toying with the awesomeness that is Examine.

Merry Christmas
Creating reusable code in MVC apps
— by Bo Mortensen
Hello, I'm Bo Mortensen and I've been working full time with Umbraco since 2010. Previously, I've been working with XAML based solutions (Silerlight, Surface, WPF).

As developers, I'm sure that we have all been through projects where the requirements changed in some way or another during the development iteration(s). More often than not, these requirements range from changing a CSS class to changing the way the menu structure is ordered which should be easy enough to handle. However, when the project manager calls you to let you know that the entire datacontext of a specific section needs to be changed in the final hour, things can/will eventually start to heat up and get messy.

The purpose of this post is to consider how we can set up our Umbraco solutions to prepare ourselves for these kinds of changes through the process by creating reusable code and make it as easy as possible to change certain parts of a website.

The basics

In the following examples, I'm using the freshly released Umbraco 7 with a very basic structure to simulate what could be a (part of a) large site. The site structure consists of a homepage node, textpages and a news folder with newsitems:

 [image: Umbraco site structure]

 Umbraco site structure

Let's dig right into the code for this incredible complicated website. The _Layout.cshtml file (the Master) contains all the general code which should be displayed at all times, i.e. the main navigation, logos, footer etc.:

@inherits Umbraco.Web.Mvc.UmbracoTemplatePage

<!DOCTYPE html>
<html lang="da">
<head>
<!-- Markup omitted -->
</head>
 <body>
 <!-- Markup omitted -->
 <ul class="nav navbar-nav">
 @foreach (var menuItem in CurrentPage.AncestorOrSelf(1).Children.Where("Visible"))
 {

 @menuItem.Name

 }

 @RenderBody()

 <!-- Markup omitted -->
 </body>
</html>
_Layout.cshtml

 And the actual frontpage will have a header, a bodytext and the latest news:

@using Umbraco.Web
@inherits Umbraco.Web.Mvc.UmbracoTemplatePage

<div class="container">
 <div class="row">
 <div class="col-lg-12">
 <h1>@Model.Content.GetPropertyValue("header")</h1>
 @Model.Content.GetPropertyValue("bodyText")
 </div>
 </div>
 <div class="row">
 <div class="col-lg-12">
 <!-- Show latest news -->
 <h3>Latest news</h3>
 <ul class="list-group">
 @{
 var newsFolder = Model.Content.AncestorOrSelf(1).Children.FirstOrDefault(x => x.DocumentTypeAlias.Equals("News"));
 if (newsFolder != null)
 {
 foreach (var newsItem in newsFolder.Children.OrderByDescending(x => x.GetPropertyValue<DateTime>("date")).Take(3))
 {
 <li class="list-group-item">
 <h4>@newsItem.GetPropertyValue("header")</h4>
 @newsItem.GetPropertyValue("date")
 <p>@Umbraco.Truncate(Html.Raw(newsItem.GetPropertyValue("bodyText")), 250, true)</p>
 Read more »

 }
 }
 }

 </div>
 </div>
</div>
Frontpage markup

While the above code works just fine, it's not pretty since the view shouldn't know anything about where the data comes from, it should only be responsible for transforming the data. As far as this goes, we've, essentially, only made use of the View in MVC (Model-View-Controller) even though the view does inherit from the UmbracoTemplatePage model object.

Setting up strongly typed views and controllers

What I've found most flexible in the long run, is to make an almost direct mapping of Document types to model classes and map data to these for the UI to transform. Let's consider the following structure in Visual Studio:

 [image: Visual Studio structure]

 Visual Studio structure

Here, I have added two new projects: a model layer and the controllers project. Notice the naming: the model may not be directly related to our Umbraco website while the Controllers is. As a given project grows in size, more models could be added for any other (web)projects aswell.

Also notice that I have a MasterController and a Master model (Credit goes to Nick Frederiksen). The Master model contains all data, that should be used across the site such as SEO related stuff, navigation, footer information etc. This enables us to let any other model inherit from the Master and then display the general data:

namespace clientname.Model
{
 public class Master
 {
 public string Header { get; set; }
 public HtmlString BodyText { get; set; }
 public string MetaTitle { get; set; }
 public string MetaDescription { get; set; }
 public string MetaKeywords { get; set; }
 public IEnumerable<MenuItem> MainNavigation { get; set; }
 }
}
Master.cs

(For this example I've just included the header and bodytext, these should be moved to their respective classes for convenience)

The MasterController allows us to map the data from Umbraco to our Master model and then return it to the view (notice: we're serving the view with data, the view doesn't ask for it) Like so:

namespace clientname.Umbraco.Controllers
{
 public class MasterController : RenderMvcController
 {
 protected ViewResult View(Master model)
 {
 return View(null, model);
 }

 protected ViewResult View(string view, Master model)
 {
 // Map fields from Umbraco
 model.BodyText = CurrentPage.HasProperty("bodyText")
 ? new HtmlString(CurrentPage.GetPropertyValue<string>("bodyText"))
 : new HtmlString(string.Empty);

 model.Header = CurrentPage.HasProperty("header") ? CurrentPage.GetPropertyValue<string>("header") : CurrentPage.Name;
 model.MetaKeywords = CurrentPage.GetPropertyValue<string>("metaKeywords");
 model.MetaDescription = CurrentPage.GetPropertyValue<string>("metaDescription");
 model.MetaTitle = CurrentPage.GetPropertyValue<string>("metaTitle");

 // Build main navigation
 model.MainNavigation = (from node in CurrentPage.AncestorOrSelf(1).Children.Where("Visible")
 let isActive = node.Id == CurrentPage.Id
 select new MenuItem
 {
 IsActive = isActive,
 Name = node.Name,
 Url = node.Url
 }).ToList();

 return base.View(model);
 }
 }
}
MasterController.cs

To make use of the MasterController, we can simply make our other controllers inherit from it rather than inheriting from the RenderMvcController:

namespace clientname.Umbraco.Controllers
{
 public class FrontpageController : MasterController
 {
 public ActionResult Frontpage()
 {
 var model = new Frontpage();

 var latestNews = new List<NewsItem>();
 foreach (var newsNode in uQuery.GetNodesByType("NewsItem").Take(3))
 {
 latestNews.Add(new NewsItem()
 {
 Header = !string.IsNullOrEmpty(newsNode.GetProperty<string>("header"))
 ? newsNode.GetProperty<string>("header")
 : newsNode.Name,
 BodyText = new HtmlString(newsNode.GetProperty<string>("bodyText")),
 Author = newsNode.GetProperty<string>("author"),
 Date = newsNode.GetProperty<DateTime>("date"),
 Url = newsNode.Url,
 TeaserText = library.TruncateString(library.StripHtml(newsNode.GetProperty<string>("bodyText")), 250, " ...")
 });
 }

 model.LatestNews = latestNews;

 return View(model);
 }
 }
}
FrontpageController.cs

Now, let's switch to our view again and refactor some code. Instead of inheriting from the UmbracoTemplatePage, we can now make our views strongly typed. Also, to separate reusable code, we can make partial views for i.e. our main navigation and our latest news section:

_Layout.cshtml

@using System.Web.Mvc.Html
@model clientname.Model.Master

<!DOCTYPE html>
<html lang="da">
<head>
 <!-- Markup omitted -->
</head>
 <body>
 <header class="navbar navbar-inverse bs-docs-nav" role="banner">
 <div class="container">
 <div class="navbar-header">
 Client name
 </div>
 @Html.Partial("Partials/_MainNavigation", Model.MainNavigation)
 </div>
 </header>
<!-- Markup omitted -->
 </body>
</html>

_MainNavigation.cshtml

@model IEnumerable<clientname.Model.MenuItem>

@{
 if (Model.Any())
 {
 <nav class="collapse navbar-collapse bs-navbar-collapse" role="navigation">
 <ul class="nav navbar-nav">
 @foreach (var menuItem in Model)
 {
 @menuItem.Name
 }

 </nav>
 }
}
_MainNavigation.cshtml

Frontpage.cshtml

@inherits Umbraco.Web.Mvc.UmbracoViewPage<clientname.Model.Frontpage>
@using System.Web.Mvc.Html

<div class="container">
 <div class="row">
 <div class="col-lg-12">
 <h1>@Model.Header</h1>
 @Model.BodyText
 </div>
 </div>
 @Html.Partial("Partials/_LatestNews", Model.LatestNews)
</div>
Frontpage.cshtml

_LatestNews.cshtml

@model IEnumerable<clientname.Model.NewsItem>

@{
 if(Model.Any())
 {
 <div class="row">
 <div class="col-lg-12">
 <!-- Show latest news -->
 <h3>Latest news</h3>
 <ul class="list-group">
 @foreach (var newsItem in Model)
 {
 <li class="list-group-item">
 <h4>@newsItem.Header</h4>
 @newsItem.Author
 <p>@newsItem.TeaserText</p>
 Read more »

 }

 </div>
 </div>
 }
}
_LatestNews.cshtml

The repository

So, what we've been doing up until now, is refactoring code to make it more reusable and thus separating our concerns of the implementation of the views.

Let's, for a moment, pretend that our client wants to display the latest news on regular textpages just like they are on the frontpage. This should be simple enough, since we can just copy our logic from the FrontpageController to our TextpageController. However, by doing this, we're duplicating code.

What we can do to decouple the code in our controller(s) is to make another layer to our solution: the repository.

 [image: Visual Studio structure with added repository]

 Visual Studio structure with added repository

The repository should serve as our central data access layer (some would argue that you should have both a repository and a data access layer, though) so basically every single query to get data from somewhere should be placed here. In the following examples I'm using concrete repository classes. However, if your project demands standard CRUD operations like Save(), Delete(), Update() etc., you could go for a generic repository.

As you can tell from my figure above, I've added a folder called Umbraco. Classes in this folder is responsible for mapping data from Umbraco to our models to serve to the controllers. Let's have a look at our latest news example:

namespace clientname.Repository.Umbraco
{
 public class NewsRepository
 {
 public IEnumerable<NewsItem> GetAllNewsItems()
 {
 return uQuery.GetNodesByType("NewsItem").Select(MapNewsItem);
 }

 public IEnumerable<NewsItem> GetLatestNews(int count)
 {
 return uQuery.GetNodesByType("NewsItem").Take(count).Select(MapNewsItem);
 }

 public NewsItem GetNewsItem(int id)
 {
 var newsNode = uQuery.GetNode(id);
 return MapNewsItem(newsNode);
 }

 public NewsItem MapNewsItem(Node newsNode)
 {
 return new NewsItem
 {
 Header = !string.IsNullOrEmpty(newsNode.GetProperty<string>("header"))
 ? newsNode.GetProperty<string>("header")
 : newsNode.Name,
 BodyText = new HtmlString(newsNode.GetProperty<string>("bodyText")),
 Author = newsNode.GetProperty<string>("author"),
 Date = newsNode.GetProperty<DateTime>("date"),
 Url = newsNode.Url
 };
 }
 }
}
NewsRepository.cs

This leaves us with a much cleaner controller for the frontpage:

namespace clientname.Umbraco.Controllers
{
 public class FrontpageController : MasterController
 {
 public ActionResult Frontpage()
 {
 var newsRepository = new NewsRepository();
 var model = FrontpageRepository.GetFrontpage(CurrentPage);
 model.LatestNews = newsRepository.GetLatestNews(4);

 return View(model);
 }
 }
}
FrontpageController.cs

The FrontpageRepository.GetFrontpage(IPublishedContent content) does the exact same as the NewsRepository: takes the current IPublishedContent and maps it to our model to serve to the view.

So, with the repository in place, we're able to add in more datasources as we wish (or as your boss wishes, rather) I.e., if the news should come from a MSSQL database, we could add a PetaPoco folder to our repository and simply change the repository in our controllers to use that one instead:

 [image: clientname.Repository w. PetaPoco added]

 clientname.Repository w. PetaPoco added

Taking things a bit further with dependency injection

To make our code even more reusable, we can tighten things up a bit using dependency injection (DI) for our controllers. For this, I'm using Autofac.

Basically, we don't want to new up a NewsRepository each and every time it should be used in our controllers. Instead, we would like for our controllers to be "dumb" and not care about the implementation. Let's have a look at the new Visual Studio structure:

 [image: Visual Studio structure with added interfaces and events]

 Visual Studio structure with added interfaces and events

Here, I have added a project for the interfaces and one for handling Umbraco events. The INewsRepository interface defines methods for getting news items from a given datasource:

namespace clientname.Interfaces
{
 public interface INewsRepository
 {
 IEnumerable<NewsItem> GetAllNewsItems();
 IEnumerable<NewsItem> GetLatestNews(int count);
 NewsItem GetNewsItem(int id);
 }
}
INewsRepository.cs

The dark magic for registering dependencies happens in the ApplicationEvents class:

namespace clientname.Umbraco.Events
{
 public class ApplicationEvents : IApplicationEventHandler
 {
 public void OnApplicationInitialized(UmbracoApplicationBase umbracoApplication, ApplicationContext applicationContext)
 {

 }

 public void OnApplicationStarted(UmbracoApplicationBase umbracoApplication, ApplicationContext applicationContext)
 {

 var builder = new ContainerBuilder();
 builder.RegisterControllers(typeof (clientname.Umbraco.Controllers.FrontpageController).Assembly);

 builder.RegisterType<Repository.Umbraco.NewsRepository>().As<INewsRepository>();

 var container = builder.Build();
 DependencyResolver.SetResolver(new AutofacDependencyResolver(container));
 }

 public void OnApplicationStarting(UmbracoApplicationBase umbracoApplication, ApplicationContext applicationContext) { }
 }
}
ApplicationEvents.cs

In the ApplicationStarted event, we register the controllers (here I'm just registering the FrontpageController) and then tell the DI container that whenever there's a constructor asking for the INewsRepository, we'd like to pass the Repository.Umbraco.NewsRepository concrete object.

Now, let's go back to our FrontpageController and refactor some code:

namespace clientname.Umbraco.Controllers
{
 public class FrontpageController : MasterController
 {
 private readonly INewsRepository _newsRepository;

 public FrontpageController(INewsRepository newsRepository)
 {
 _newsRepository = newsRepository;
 }

 public ActionResult Frontpage()
 {
 var model = FrontpageRepository.GetFrontpage();
 model.LatestNews = _newsRepository.GetLatestNews(4);

 return View(model);
 }
 }
}
FrontpageController.cs

With the DI container wired up, we can now add a constructor for our FrontpageController to take an INewsRepository interface and store that in a global variable. In the Frontpage method, we then make use of that interface to get the latest news items.

So basically, we now have both a view and a controller, that doesn't know anything of the actual implementation. Also, if the datasource should be changed from using the Umbraco news items to i.e. MSSQL, we can just swap it in the following line:

builder.RegisterType<Repository.PetaPoco.NewsRepository>().As<INewsRepository>(); and let the PetaPoco.NewsRepository implement the INewsRepository.

Afterword

I can almost hear you ask the following question: "but isn't this overengineering the project?" The answer is easy: Yes! It's absolutely overengineering if the website is for your uncles carpenter company which needs 4 pages and a contact form.

The above example is really smallscale and it should be used to taste and to match the ambitions of a project. If you're developing a medium-to-large website with integrations to external systems/services, it could be useful in the long term to separate code like this.

Also, I'm personally not a software architect of any kind (and I'm not striving to be), so I'm definitely listening to any feedback and would invite you all to an open discussion about this approach and structure in general.

Happy christmas and happy coding! :-)
Why you should care about emotions when building a web shop
— by Christian Wendler
Last summer my friend Markus Kämmerer, a former web developer, did a session about emotional commerce at umbOktoberfest. I bet dollars to donuts that most attendees didn't know why this topic would relate to them at first. Isn't designing and building a web shop just something that should follow best-practice examples? Sure, you may hire a creative designer for a nice template and some css work, isn't that enough emotions?

It turned out that his session was controversial for some but well received by all at the end. For a good reason he found a bunch of new clients that Friday in August.

 [image: Markus Kämmerer explains emotional commerce to Umbracians in Frankfurt]

 Markus Kämmerer explains emotional commerce to Umbracians in Frankfurt

Markus and I are adherers of some principles that have been around in Germany for quite a while, but still have the nimbus of some kind of secret lore. I'm pretty sure that there are similar principles present in other countries, maybe in your country they're more common. But when it comes to Germans and the marvelous power of stirring emotions it has to be a secret lore, right?

At first let's assume that because of the vast amount of information our brain has to deal with only 5% of this information make it to our conscious mind. We only think, decide and act consciously on sensory input that goes into these 5%.

What is the answer of most information submitters (e.g. ads, shops or even content management systems)? They try to drive your attention to their bit of information. Because almost everybody tries the same, we're experiencing more and more aggressive advertisement strategies. You're not selling enough? Get a better pitchman, stupid.

Really?

Over time there have been always businesses that were smart enough to be sustainably successful using another strategy. These businesses don't focus on the small 5%, but on the remaining 95%!

How is that possible, you may ask? The answer is quite simple to understand, but hard to master (it always has to be like this, I guess). Most of your decisions were made by your limbic system unconsciously. Only this way your brain could handle all the stuff, because compared to the limbic system your conscious mind is something like an old 8086 CPU, in other words: really slow, but able to do logical work.

The limbic system is so quick that it can make decisions even before you know all the facts. It uses patterns of similar situations and emotions to decide, that you really wanna buy this yummy food that smells sooo good. As long as the price or the process of buying this food produces not more pain than your wish to gulp down this food produces happiness, you'll buy it. Afterwards you may find even a good reason why this was a good 'decision', maybe your fridge is empty, the kitchen was just cleaned up or something else. Do you know situations like these? I hope so, because this is how a lot of these food stall franchises work and you're in healthy mental shape when you fall for it.

 [image: Use the force: The guys from uCommerce, Tea Commerce and uWebshop offer highly flexible web shop packages for Umbraco]

 Use the force: The guys from uCommerce, Tea Commerce and uWebshop offer highly flexible web shop packages for Umbraco

This leads us to the question how we could draw attention to our web shop or specific product. As we couldn't directly manipulate memories (at least when someone is a prospect), we have to focus on emotions to influence the limbic system.

Most shop owners see the dilemma of pain (spending money) versus happiness (buying something), but they don't raise the happiness, they lower the pain - read: lower the prices. This really works quite well actually, but it leads to cut-throat competition. So it's wise to think of ways to add positive value and emotions to your web shop, and there are plenty of them. Keep in mind that this also helps when something went wrong, maybe a bug in your razor macro interrupts the buying process. Negative emotions are 9 times stronger than positive ones! So you never could do enough in terms of adding emotional value to your web shop.

Markus summed up the most important things to think of in his excellent list of the...

Seven Commandments of Emotional Commerce

1. Build a strong foundation of trust!

Without the trust of your clients you don't need to put any more efforts in your web shop project. Trust can be gained from certifications, guarantees, a long company history, an iconic reputation or a large customer base.

2. Surpass expectations!

Don't just use starter kits, templates and such. Of course, whenever you do something differently to a best-practice approach do it for good reason and think twice, but you should offer more than customers would expect from your kind of web shop. This could include better contract terms, cooler features, quicker delivery, free add-ons and level 5 friendliness.

3. Tell stories!

Human brains are built to deal with stories, and a healthy brain always loves a good story even when its bearer pushes his mouse cursor over a web page. Good story tellers explain why exactly their web shop is the most authentic in universe, they tell the story behind the whole project and they make the automated business human again. If done the right way there will be an emotional relationship between seller and buyers. But beware of telling lies!

 [image: We love Umbraco, because it's the perfect CMS to build great web shops]

 We love Umbraco, because it's the perfect CMS to build great web shops

4. Love and craft every detail!

People will recognize if you've just put together your website in a clumsy way. Apart from that, their sub consciousness will give them a satisfying gut feeling when it detects all the small bells and whistles, when every single part of your website - including design and functionality - demonstrates your dedication. And this demonstration shouldn't end with the order confirmation.

5. Address all senses!

This is especially important to web shops as there's nothing to touch, smell, taste or hear. You could use a really attractive packaging, offer free samples or - when the business is big enough - even set up a real showroom. Make use of videos, whenever appropriate.

6. Let your customers speak!

Don't fear the comment box, even when a customer will use it to complain about something. They will blame you anyway, we're living in the age of social networks and product rating portals! Maybe a harsh review is true and you could learn something from it? Only delete posts by obvious trolls, never posts by your real customers. Never fight back.
Another very successful approach is to utilize your most loyal customers, turn them into fans and they will love to promote your products to prospects for free. Never think of paying them, because this will turn fans into external sales persons. This might damage the trust foundation and authenticity you've spend so much work on.

7. Love your desired target audience!

Know your customers, understand their needs and wishes. Don't filter your target audience only by age, gender or income. Filter by shared needs, limbic profile, preferences, way of life and so on. Select images, design, wording and features carefully to match your target audience exactly. It's an intrinsic factor that this won't just generate ecstatic customers, but also haters. Without haters no fans, so haters are in fact better than indifferent people. If you try to please everyone, you'll just end up with another mediocre web shop.
If you plan to address multiple target audiences, use your Umbraco and your favorite web shop package to set up a single shop front end and domain for each target audience. This helps to separate the different customer segments in a very clean way and you can build the perfect user experience for all of them.

If you want to learn more about how emotions and the limbic system are wired up you might want to check out the explanatory model called 'Limbic Map' by Dr. Hans-Georg Häusel. Or get in touch with Markus Kämmerer at mk@storemotion.de.

Have a wonderful Christmas time everyone!
How And Why We Do Umbraco MVC
— by Kasper Julius Holm and Niels Ellegaard
As a .NET developer the introduction of MVC in Umbraco was a huge step in the right direction for us, so we dived head first into the wonderful world of Umbraco MVC.

We had already switched most of our code over to Razor in macroscripts, but having to go through a masterpage for template was kinda redundant and old fashioned. However with MVC we could realize a long time dream of leaving all that behind and stick with our good buddy Razor!

With MVC comes a pattern of separation of concerns. Which of course is one of the main reason why we love MVC, this allows us to completely separate the views from the logic.

STORY TIME!

We started out as pioneers into the Umbraco MVC immediately upon release.

As this was in the early MVC releases there wasn't a whole lot of documentation on the subject.

We tried a lot of things trying to create custom controllers, including the black arts of custom routing in the early Umbraco MVC days.

http://our.umbraco.org/forum/developers/api-questions/38048-Umbraco-411-MVC-Custom-Routing-Content-is-null-How-can-I-load-content?p=1

However, in time, there was this one link from our lovely Umbraco HQ, leading us on a righteous path.

We used this to create our first project in Umbraco MVC.

http://our.umbraco.org/documentation/Reference/Templating/Mvc/custom-controllers

It was built around a BaseRenderModel which inherits the RenderModel and was used in the layout.

And a BaseController which inherits the Umbraco.Web.Mvc.RenderMvcController, setting all the global stuff, like Navigation bars, Google analytics script and SEO parameters.

Then all we had to do was always to inherit from those.

It worked just fine, but we wanted more!

Clean Views!

The RenderModel gave full access to Umbraco methods and as such we could still do all the logic in the view.

Now we really wanted a clean separation and being able to dig directly into Umbraco from the view, violates that. So we grabbed our pirate hat and went into uncharted waters! Yarr!

What we did was creating a View with a custom Model, only containing the data that the View needs.

With this we now had clean and strongly typed Views that only knew about the Model being passed, just like regular MVC.

With clean Views the next stop to a great coding standard in MVC is, in our humble opinion, Don't Repeat Yourself (DRY) code. With stuff like News being shown on more than one page we found ourselves writing some of the same code and some of the same property aliases more than once. So we created a Mapper for each DocType so we could just call the mapper and get a model back filled with the data we needed. This way, if we ever needed to change the DocType, we only had to update the mapper.

This was also very easy with inherited doctypes as their model just inherited exactly as they do in Umbraco and then pass them through the mappers needed.

Our dear colleague Nick Frederiksen made a blogpost on this back in May.

http://ndesoft.dk/2013/05/25/how-to-create-a-real-mvc-app-using-umbraco/

How we do it now

After a few projects we realized that we had left our Controllers barren and moved all of that code to the mappers. So we refactored it a bit, still having a clear definition of when to use what.

So now we've moved the code back in the Controllers, unless the data is on more than one page or if the DocType doesn't have a template, then we make a mapper. We keep the DRY principle of only having the code in one place. So if you at some point need an additional property on your news, you only have to change it a single place, regardless of how many pages you use it in. The same concept goes for partial views!

It is a relatively small change we made, but Nick did make a blog post about the change as the first one generated a lot of debate.

http://ndesoft.dk/2013/08/10/real-mvc-app-using-umbraco-revisited/

Can we do it better?

There is generally always room for improvements so naturally we haven't stopped trying to improve this and neither should you. Pick up the telescope and look in the horisont!

As it is now we always only have one model for each DocType, however sometimes we use the DocType somewhere else and only need a few of the properties on that page.
For example we have an article page and want to pull the top 3 articles into the frontpage. However on the frontpage we only want a small teaser text and a headline, not the whole bodytext nor the images and what else might be attached to the article.

So here we ideally want a smaller viewmodel just with the properties that we need in the given context.

While this isn't so difficult, we simply create another model and map it in either a mapper or in the controller depending on the amount of places it is used. There is one glaring issue.

Our property alias, those pesky magic strings, are now in more than once place.

It is still up for debate internally but the proposed solution is to replace the mapper class with a DocType class.

It would look something like this.

public static class ArticleDocType
{
	public const string TeaserPropertyAlias = "teaser";
 public const string HeaderPropertyAlias = "header";
 public const string BodyTextPropertyAlias = "bodyText";

 public static T Map<T>(IPublishedContent content, UmbracoHelper helper, T model)
 where T : ArticleModel
 {
 model.Header = content.GetPropertyValue<string>(HeaderPropertyAlias);
 model.Body = content.GetPropertyValue<IHtmlString>(BodyTextPropertyAlias);
 model.Teaser = content.GetPropertyValue<string>(TeaserPropertyAlias);

 return model;
 }

 public static ArticleModel Map(IPublishedContent content, UmbracoHelper helper)
 {
 return Map(content, helper, new ArticleModel());
 }

 public static IEnumerable<ArticleModel> Map(IEnumerable<IPublishedContent> contents, UmbracoHelper helper)
 {
 return contents.Select(x => Map(x, helper)).WhereNotNull();
 }
}

The DocType class will still be a static class with all the mappers regarding that specific DocType, just like the old mappers. The addition is constant strings for all the property aliases.

Then in any controller or in a mapper on this class we can reference those constants, keeping the property aliases in check.

So, is this the final revision?
Probably not, we always want to improve on the way we code and as Umbraco MVC gets a bit more established best practices will settle. So this is our, current, proposition for a best practice in Umbraco MVC. As always this is completely open for debate for anyone so if you have anything to add or comment, you are more than welcome to hop aboard!

But why go through all this trouble?

It might seem like a lot of work right off the bat, but once you get into the flow it makes things a lot easier. So we'll summarize some of the positive things about it.

	
Code is not being compiled at runtime. Because of this you will notice code mistakes faster because your solution simply won't build.

	
You get Unobtrusive validation out of the box with data annotations in the models!
Having been used to the ASP.NET validators and custom JavaScript this is a huge deal. Being able to slam a dataannotation on the model properties and having the validation "Just Work!". That is truly amazing.

All you have to do is add these two lines to your appSettings in the config file.

<add key="ClientValidationEnabled" value="true" />
<add key="UnobtrusiveJavaScriptEnabled" value="true" />

We did run into a small speedbump as we generally have validationmessages in the dictionary for multi-lingual sites. The best way we found around this was to create our own data annotations and have them inherit from the original and extend them with a dictionary name.

[AttributeUsage(AttributeTargets.Method | AttributeTargets.Property | AttributeTargets.Field | AttributeTargets.Parameter, AllowMultiple = false)]
public class UmbracoRangeAttribute : RangeAttribute, IClientValidatable
{
	public UmbracoRangeAttribute(int minimum, int maximum, string dictionaryKey)
		: base(minimum, maximum)
	{
		this.ErrorMessage = dictionaryKey;
	}

	public override string FormatErrorMessage(string name)
	{
		return umbraco.library.GetDictionaryItem(base.FormatErrorMessage(name));
	}

	public IEnumerable<ModelClientValidationRule> GetClientValidationRules(ModelMetadata metadata, ControllerContext context)
	{
		// Kodus to "Chad" http://stackoverflow.com/a/9914117
		var rule = new ModelClientValidationRule
		{
			ErrorMessage = umbraco.library.GetDictionaryItem(this.ErrorMessage),
			ValidationType = "range"
		};

		rule.ValidationParameters.Add("min", this.Minimum);
		rule.ValidationParameters.Add("max", this.Maximum);
		yield return rule;
	}
}
Rangevalidator Example

A quick guide and walkthrough of this can be found here.

http://ndesoft.dk/2013/04/20/how-to-make-localized-models-in-umbraco-mvc/

	
Also with the MVC and the MVC routing, creating forms and Ajax posts and calls is insanely easy. Most of the time you won't even have to write any JavaScript. If needed it is very easy to extend it with OnCompleted events etc.

@using (Ajax.BeginForm("Order", "ShopSurface", new AjaxOptions() { HttpMethod = "POST", OnSuccess = "OnSuccess", OnBegin = "Showoverlay" }))
{
 @Html.Partial("_LibaryInfo", Model.Library)
 <input type="submit" value="Order now"/>
}

	
Keeping the code DRY makes the code much easier to maintain. Because you won't have to search through the whole solution for each small change.

	
Last but not least. This is one your boss will love! Having a better separation of code makes it easier to divide the tasks and work multiple people on the same project, speeding up the development process. For example being able to mock the model before the controller is completed. Thus making it possible for a developer to create the view without the logic being done.

Now we know there is a steep learning curve for MVC, but we firmly believe it is a more efficient way of working with the web.

That being said, we are not saying this is the only way of creating an Umbraco MVC site, but it helped us immensely and hope it can help you create even better Umbraco sites than you did before!

Merry Christmas & Happy coding!
The Dictionary Secrets
— by Jan Skovgaard
Hi guys, today's episode is all about dictionary items and how you can use them to do powerful stuff with them.

 Note: The concepts mentioned in this article works the same in Umbraco version 4, 6. Currently it's not supported in version 7.

The basics

You can create one or more dictionary items in the "Settings" section where you simply just right click the "Dictionary" folder and select to create a new item, just like you create anything else in Umbraco.

 An entry for each defined language in your Umbraco instance will show up and you can write a word or whole sentence in the different languages.

 [image:]

When building multi-language sites there is the traditional way, which you can learn more about on umbraco.tv or the 1-1 approach, which was featured in last year's 24 Days In Umbraco calendar.

Get organized

"Wouldn't it be nice if you could organize the items in folders", I hear you saying. Well you can. Kind of!

 It's actually possible to create nested dictionary items, which gives you the opportunity to organize your dictionary items into some more logical structures.

 Se the images below - Makes quite a difference, right?

 Unorganized structure

 [image:]

Or

Organized structure

 [image:]

"But it's not a real folder", well you're right about that. But since it's possible to nest the items you can create structure and use them as folders. However it's currently hard to visually distinguish between items that are used for holding translated text and those that act like folders.

This is all nice for creating dictionary items that can be used on the website and if you're an XSLT guy then Chriztian "I eat XSLT for breakfast" Steinmeier has written a nice article on using dictionary items in XSLT, which is an enjoyable read.

But did you know that it's actually also possible to translate property names, descriptions etc. that you create to build the user interface within Umbraco? No? Well continue reading then :)

Making the backoffice multi-language

So you have been working on this large multi-language website, which has visitors from many countries around the world and each country has it own language-version of the website.

The websites are being updated by editors from each country and perhaps the editors from Spain and Denmark don't feel too comfortable updating the website, since every property and description is written in english, which you advised the client to be the language of choice, since it's after all easier for spanish and danish people to learn english than it is for english or american people to learn either danish or spanish.

However, some of the editors may not feel too comfortable with the english back-office and would wish it was possible to have the names and description fields setup in their own language.

Well, with Umbraco it's possible to do just that.

(Since I suck at spanish the following examples will be in danish and english.)

So I have this document type, which consists of a header field and a body text field.

I have a description for both fields.

I Start out by Creating a dictionary item called "Back office items", which acts as a folder and then I create another two folder-entries called "Property name items" and "Property description items".

Under each folder I create the "Header Name", "Header description", "Body text name" and "Body text description" entries, which I'm going to refer to in my document types.

 [image:]

Now when I create my header and description on my Textpage document type I simply just use #Header name, which is the name of the dictionary item for my header text, in the name field. In the description I reference #Header description.

 [image:]

So when I see the text page being logged in with a user set to the english culture, it will look like this:

 [image:]

 And when I log in using my danish user account it looks like this:

 [image:]

 That's pretty awesome, huh? :) All I do is reference the dictionary name using the hash sign like this: #DictionaryName - really simple, right?

 And that's not all!

 You can also make translations of

	Document type names

	Tabs

	Datatypes (Checkbox list, Radio button list and any variation of the drop down list)

Simply add dictionary items for the above mentioned stuff and reference them using #DictionaryName when you create a document type, tab or even a datatype (Based on the ones mentioned above - It may be possible on others as well).

 That's pretty cool, huh? Indeed it is, but be aware that extending document types, creating new document types etc. WILL take you longer time than usual because you need to create some dictionary items before creating new properties or document types so make sure it's worth the effort and creates value for your client and editors before going down this road.

 If everyone is fine by the english as a default language then it's perfectly fine to just keep the language in english in general.

Make sure you keep being organized

As you can see from my screen dumps earlier in the article I have made two dictionary folders in the root - One for the website translations called "Website" and one for the back-office translations called "Backoffice". This should help keeping things organized, but if you prefer to organize things different that's of course entirely up to you.

 You may also want to create a prefix if you're going to make a package, which should be possible to easily translate into other languages. Then it would make sense to prefix the dictionary items using your package name or a short name of your package.

 Before we "Finnish" (-get it? :)) for today, I'd like to mention some things to be aware of when working with dictionary items.

A few things to be aware of

Ok, so now you have learned that you can do some pretty powerful stuff using dictionary items and you're probably going to use it a lot more in upcoming projects. So here's a list of "gotchas" that are nice to know about

 Currently it's not possible to

	Rename a dictionary item - So make sure that you write the correct name

	Move dictionary items if you need to restructure for some reason

	Sort dictionary items

	Copy dictionary items

	To create two dictionary items with the same name - Therefore it's a good idea to use prefixes if the same word or sentence needs a unique entry for some reason

And currently the default administrator account has its language set to UK english and the default english language created is US english, which will result in your carefully translated property names etc. will display in the back office like [#PropertyName] - If you would like to have this minor issue fixed in the core, feel free to go and vote it up or even dig into the core and submit a patch fix.

 If you would like that to change then you can vote up this improvement suggestion on the issue tracker and add more suggestions if you have an idea to make the dictionary item board better.

Ok, I'm done - Hope you liked it. Now, go and have a play! :)

Merry Xmas and happy holidays everyone.
Data = Knowledge
— by Marianne Holmgaard
Once upon a time I worked as a webmaster in a large Danish company. One day my boss came up to me, telling me that he'd heard about something new, something brilliant, something called a mobile website. And he wanted one of that! Preferably yesterday of course.

I told him that we most certainly should get one of those mobile versions of our website but there were several things to discuss, before developing one. For example we should look at our business strategy to see what was relevant on a mobile this site, analyze our traffic to prioritize the content and set up business goals to measure its success and define what was more suitable: a responsive design, a mobile website or perhaps an app?

"No, no, no" he said. "There's no time and money for that kind of thinking. Just give me a website that looks great on a mobile".

Everybody has an opinion about web projects

In the design and developing process my colleagues and I talked a lot about the project and its functionality. We had meetings with a bunch of relevant people. Everybody had their own opinion about the project.

The designers had some interesting points: "Hey, what about taking this color from your logo and use it in your menu?" But we never discussed usability: How readable the font would be on a mobile page or how big the buttons should be to be user friendly. But hey! It looked great on paper.

And when we talked to the developers, they had some great technical ideas for the mobile site. "Hey, let's use the GPS in the phone and show people the nearest shop!" But no one asked us what the most important function was on the site.

When we ran a version to our boss he said: "Hey, what about one of those automatic sliders on the front page? Then we can show of all of our great marketing products to our customers."

The board of the company told us that we definitely needed to display all our news on the mobile site so we could show the sorroundings what a serious company we were. People love reading news on the run, everybody knows that! But the fact was that only few people cared about our news or our marketing products.

Guess who we never asked?

Since the process should be both fast and cheap, there wasn't any time or money to ask the people, who were actually going to use the mobile site. What they wanted? And there wasn't any time or money to do split test of basic functionality.

So we ended up making a mobile website, based on gut, convictions and best practices. The result was an attempt to please anybody but the actual users.

How do you think that went?

We ended up making a mobile site that didn't please anybody. The conversion rates were not impressive and it didn't perform as expected. So what to do about that? There's only one thing you can do and that's damage control: We tried to optimize the low-hanging fruits to avoid losing too much business.
This meant spending even more time and money than we would have spent on testing before developing. That's never a good business strategy.

The curse of knowledge

You probably think that you're smarter than us and don't make the same mistakes as we did. I definitely hope so!

But very few companies start out by figuring out what the goal of their project is. They never outline the business case to see if it's a profitable project or even define their most vital online Key Performance Indicators.

Recently I've seen a company with a rather well-known web shop changing platform. They launched a month ago, just before Christmas. Christmas being their biggest season of course.

From one day to another their conversion rates dropped and their bounce rates went sky high. Why? They replaced an old, probably outdated version with a new one. How could that new shop not perform better?

The answer is simple - We all suffer from "the curse of knowledge". You simply know way too much about your own business to look at it from an outside perspective. The web shop owner knew it so well that he forgot to communicate basic information on the shop. That's why he forgot to put an "add to basket" button on the product list for example. Or to put prices and product names on the related product sliders. It was no longer clear what the customer should do on the shop, so they simply went somewhere else to buy their Christmas gifts.

The data driven process

What could this web shop owner have done differently? What could I have done? Well, first of all we both should have looked at our web statistic before defining any content or implementing any functionality.

Analyze your data

Any new web project should take its starting point in a web analysis tool such as Google Analytics. This is how we make relevant decisions when building a new web platform. Have a look at the content with most page views; shouldn't this be prioritized? Look at your bounce rate - does it show any critical navigations issues? Which traffic sources deliver the most valuable traffic - How can we get more of that? What about pages that are critical to your business - how do they perform? How about your goals - are they clearly defined? And are they performing well with good conversion rates, or do you have any issues with your conversion funnel?

Analyze your data and make solid conclusions from this. It helps you to figure out the strengths and weaknesses of your solution and you know what parts to improve.

Know the business goals

Now it's time to take a closer look at your business. What's the purpose with your existence on the web? A shop should of course generate sales but maybe in your case it's important to achieve some of these goals instead?

	Convert customer leads

	Have people sign up to a newsletter

	Order some material

	Fill out a contact form

	Communicate important information

	Etc.

You need to define your business goals to be able to clearly communicate them on your website or web shop. Each page should only have one, and only one, Call-To-Action. This means you have to prioritize your goals after relevance and match them up with your content.

Make sure you set up goal tracking to measure your Return On Investment (ROI). Here you'll find the arguments you can use, when your boss or client asks why they should invest more money to build a new contact form for instance. This is where you can benefit from impact measurement when presenting results. It's all about the bottom line.

Involve the actual users

So now that you have prioritized your content, you have defined your business goals and know how to communicate them and measure the effect it's time to design a commercial web solutions based on knowledge you have gained by analyzing your data. But it's vital not to lose sight of this knowledge when outlining design and functionality.

Most sites are built from a technical perspective - not a business one. In most cases we make solutions based on what is technically possible, and not based on the knowledge we gain from our highly valuable data. This calls for a new way of thinking. That's why we should find out if our website navigation is easy enough by involving and asking the user questions like

	What do you think about the navigation on the site?

	What do you think about the search function? Is it clearly visible? Does it work as you would expect?

	Is the checkout process intuitive enough?

	Is there anything that makes you unsecure during checkout on our shop?

	Do you miss vital information that keeps you from buying products on our shop?

	etc.

Testing usability and functionality is vital to challenge our old way of doing things. We should involve our users early in the process before implementing the solution. Maybe even earlier by testing the old platform and include this knowledge in the proces of creating the new solution. Then we create for the end user - not anybody else.

Does it sound like hard work? Does it seem impossible, when your boss or client yells at you to finish the project and stop spending more money? It is hard work.

It's much easier to build or optimize solutions within our comfort zone. But ask yourself, if you or your client can afford not to work data driven when developing new solutions. Even though this means extending the project scope to include

	User testing

	A/B split testing

	Impact measurement

	Analyzing user data/behavior

And building platforms based on that knowledge we gain from doing these things. Investing in a data driven process where focus is on the end user means saving money in the end. And that's the business of business.
Content-First in Umbraco
— by Chriztian Steinmeier
"So when can we start to put our content in the website?"

You knew that sentence would find its way to your phone, fax, email etc. sooner or later, right?

Well, ever since I started developing websites, regardless of the CMS used, I've wrestled with the fact that I always seemed to open the system to the client sooner than I felt it was ready to.

This immediately added a stress-factor because I now had to not only code "the rest of the site", but I'd also get at least five or six calls from the client during the day, and a significant amount of email from them about various issues, regarding everything from stuff that didn't "look quite right, yet" to stuff that wasn't implemented but they couldn't tell, because X, Y or Z.

So for years, we've tried to basically answer two main questions regarding the client's content-building process:

	How can we make our clients focus on their content, way earlier in the process? (Yes, it sounds strange that that's a concern)

	How to have them completely ignore all the other stuff (selecting images, assigning widgets etc.) while writing, so they're not distracted by stuff going on that's not a part of the current phase of the project?

Asking the client to just start writing the content (which we all know would then happen in Microsoft Word with all the problematic paths that follows) was just not going to work. Seen way too many different and weird formats to even try that. Apart from the fact that they always "thought it was better to wait until the site was done" anyway... As much as I'd love to force my clients to use Markdown and create all their content in textfiles before touching Umbraco, that's just not an option either.

Lightbulb Moment

So about a week or so after this year's fabulous Codegarden event, I was - again - having an internal discussion with myself about this and suddenly I somehow triggered a synapse, making a connection between something I saw in Marc Goodson's excellent presentation at CG13, and a giant Umbraco logo swinging towards me... and I had a total Homer Simpson moment, D'oh-ing a gazillion times...

Why not use Umbraco and give the client access to a separate site where they could build the content and structure?

I couldn't answer that either, so that's what we did.

Our Solution

We've gone and built a totally separate site for them, which lets them enter the header, hook/teaser and content for all the standard text pages of the website we're building for them. They can also fill in the so-called SEO fields which is nice, because they're usually overlooked in the old "content updating frenzy" way.

There's a simple navigation so they can browse the page to see how the content "behaves" (e.g.: Does these three pages have roughly the same amount of content? Does it make sense to have five of these short pages? Why not just two? etc.)

We've added some basic review features, so they're able to flag a page ready for proof-reading, and later to have it listed as "Done". There's also a handy Note feature ('twas what I nicked from Marc's presentation, btw.) that lets them add a Post-It(TM) to a page, which we can then show when someone's editing that page. This is to at least give them a chance not to use the content field for notes like "Remember to mention X here" which would of course, eventually, end up on the live site, because, well, X, Y & Z again :)

We also built a Dashboard for them, to get a quick overview of pages ready for proof-reading, new notes etc. - the idea is that we can get them going right away and they can take the content all the way to "launchable" themselves, leaving us to do the other magic. We don't need to keep reminding them about the content, since the dashboard will keep them updated.

The Benefits

By giving the client a separate site for their content, almost immediately on day one of the project, has several benefits (at least for us):

	They're forced to focus only on the content - not how it looks.

	They learn the basics of Umbraco while doing it (huge win, actually)

	The styling is very minimal, so they can review it on their iPad/iPhone etc. without us having to "responsinate" anything up front

	We have a stable environment while building the site, and we can continuously import pages from the content site and see how the content fits

	When it's time to port the content to the real site, I can map the content to any Document Type I see fit - and I can redo the export/import steps as many times necessary to get the correct structure in the real site.

So how are you doing it?

We're still experimenting with this, but we'll definitely be doing something like this on as many projects as possible - but I'd very much like to hear how you're all doing this stuff. How do you get the client "onboard" the content train from the get-go?
Hybrid Framework
— by Jeroen Breuer
I'm Jeroen and I work as a developer at Have A Nice Day Online. Last year I showed the DAMP Gallery during the 24 Days In Umbraco Christmas Calendar. It was a complete website that showed how to use DAMP in MVC. That was a year ago and the way I'm using DAMP these days in MVC has changed. I'm using a special version of DAMP that can work together with CropUp. By adding a few extension methods it has become even easier to create a gallery. These changes are part of the Hybrid Framework. It's an open source Umbraco Visual Studio solution which can be used as a basis to develop new websites on. It also has a best practises example project which can be used the same way as the DAMP Gallery. The Hybrid Framework has the following features:

- MVC Framework
- Uses route hijacking, but not mandatory
- Everything is a surface controller
- Also has a default controller
- A lot of useful extension methods
- Preinstalled packages
- Configured settings
- Cache and bundling + minification

The following example (which is also part of the Hybrid Framework Best Practises) shows how easy it is to write a responsive image gallery.

@using Umbraco.Web;
@using Umbraco.Extensions.Utilities;
@inherits Umbraco.Web.Mvc.UmbracoTemplatePage
@{
 Layout = "Master.cshtml";
 //for slimmage to adjust quality based on pixel ratio, quality querystring must be present
 var gallery = Model.Content.GetCroppedImages("gallery", 400, null, quality:90, cropAlias:"gallery", slimmage:true);
}

<h1>@(Model.Content.GetPropertyValue<string>("title"))</h1>
@(Model.Content.GetPropertyValue<HtmlString>("bodyText"))

@*Gallery*@
@if (gallery.Any())
{
 <div class="gallery">

 @foreach (var photo in gallery)
 {

 }

 </div>
}

It's called the Hybrid Framework because it uses route hijacking (which means logic can be done in a controller before it passes a model to the view), but you don't have to do that. For example on a news overview page you can fetch the news items (child nodes) in the controller, but on a news details page you only need to show a few properies so that doesn't need a controller. The following code shows the new overview:

@using Umbraco.Extensions.Models;
@using Umbraco.Extensions.Utilities;
@using Umbraco.Web
@inherits Umbraco.Web.Mvc.UmbracoViewPage<NewsOverviewModel>
@{
 Layout = "Master.cshtml";
}

<h1>@(Model.Content.GetPropertyValue<string>("title"))</h1>
@(Model.Content.GetPropertyValue<HtmlString>("bodyText"))

<section class="news">
 @*News items overview*@
 @foreach (var n in Model.NewsItems)
 {
 <article class="newsitem">

 @n.Title

 @n.Date.ToString("F")

 </article>
 }
</section>
@*Pager*@
@if (Model.Pager.Pages.Count() > 1)
{
 <div class="pagination">	

	
 @if (Model.Pager.IsFirstPage)
 {
 <
 }
 else
 {
 <
 }

 @foreach (var number in Model.Pager.Pages)
 {
 var distanceFromCurrent = number - Model.Pager.CurrentPage;

 if (number == Model.Pager.CurrentPage)
 {
 @number
 }

 else if ((distanceFromCurrent > -10) && (distanceFromCurrent < 10))
 {
 @number
 }
 }

 @if (Model.Pager.IsLastPage)
 {
	 >
 }
 else
 {
 >
 }

	

 </div>
}

As you can see it's possible to use Model.NewsItems and Model.Pager, but also Model.Content.GetPropertyValue<string>("title"). That's because the NewsOverviewModel inherits from a base model which in turn inherits from the RenderModel again, which is the default model that Umbraco uses everywhere. The following code shows how the model is created in the controller:

using DevTrends.MvcDonutCaching;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.UI;
using Umbraco.Extensions.Controllers.Base;
using Umbraco.Extensions.Models;
using Umbraco.Extensions.Models.Custom;
using Umbraco.Extensions.Utilities;
using Umbraco.Web;
using Umbraco.Web.Models;

namespace Umbraco.Extensions.Controllers
{
 public class NewsOverviewController : BaseSurfaceController
 {
 [DonutOutputCache(Duration = 86400, Location = OutputCacheLocation.Server, VaryByCustom = "url;device")]
 public ActionResult NewsOverview()
 {
 var model = GetModel<NewsOverviewModel>();

 var newsItems = GetNewsItems();
 var pager = Umbraco.GetPager(2, newsItems.Count());

 //Only put the paged items in the list.
 model.NewsItems = newsItems.Skip((pager.CurrentPage - 1) * pager.ItemsPerPage).Take(pager.ItemsPerPage);
 model.Pager = pager;

 return CurrentTemplate(model);
 }

 public IEnumerable<NewsItem> GetNewsItems()
 {
 return
 (
 from n in CurrentPage.Children
 orderby n.GetPropertyValue<DateTime>("currentDate") descending
 select new NewsItem()
 {
 Title = n.GetPropertyValue<string>("title"),
 Url = n.Url(),
 Image = n.GetCroppedImage("image", 300, 300),
 Date = n.GetPropertyValue<DateTime>("currentDate")
 }
);
 }
 }
}

As you can see all logic is done in the controller and the view has almost no logic. For the news items it's just a simple foreach.

The news details page doesn't need this kind of logic so it doesn't have a controller. The following code is everything which is needed for the news details:

@using Umbraco.Web;
@using Umbraco.Extensions.Models.Custom;
@using Umbraco.Extensions.Utilities;
@inherits Umbraco.Web.Mvc.UmbracoTemplatePage
@{
 Layout = "Master.cshtml";
 var image = Model.Content.GetCroppedImage("image", 300, 300, quality:70);
}

<h1>@(Model.Content.GetPropertyValue<string>("title"))</h1>
<p>@(Model.Content.GetPropertyValue<DateTime>("currentDate").ToString("F"))</p>
<p>@(Model.Content.GetPropertyValue<HtmlString>("bodyText"))</p>
<p>

</p>

Both news overview and news details inherit from the same master. Here are some parts of that master.

@inherits Umbraco.Web.Mvc.UmbracoViewPage<BaseModel>

@*Menu*@
<nav>

 @foreach(var m in Model.MenuItems)
 {
 <li class="@m.ActiveClass">@m.Title
 }

</nav>

Even though the news details page doesn't have its own model or controller we can still pass a BaseModel to the master because of the default controller:

using DevTrends.MvcDonutCaching;
using System;
using System.Web.Mvc;
using System.Web.UI;
using Umbraco.Extensions.Controllers.Base;
using Umbraco.Extensions.Models;
using Umbraco.Web.Models;

namespace Umbraco.Extensions.Controllers
{
 public class DefaultController : BaseSurfaceController
 {
 /// <summary>
 /// If the route hijacking doesn't find a controller this default controller will be used.
 /// That way a each page will always go through a controller and we can always have a BaseModel for the masterpage.
 /// </summary>
 /// <param name="model"></param>
 /// <returns></returns>
 [DonutOutputCache(Duration = 86400, Location = OutputCacheLocation.Server, VaryByCustom = "url;device")]
 public override ActionResult Index(RenderModel model)
 {
 var baseModel = GetModel<BaseModel>();
 return CurrentTemplate(baseModel);
 }
 }
}

If we don't route hijack to our own controller this controller will be hit. That means that the news details page will go through this controller which creates the BaseModel that can be used in the master view. Because the BaseModel inherits from the RenderModel the news details view also just works. All the controllers inherit from the BaseSurfaceController which makes sure that a single controller can be used for both route hijacking and surface controllers. Here are some parts of the controller:

/// <summary>
/// Return the base model which needs to be used everywhere.
/// </summary>
/// <typeparam name="T"></typeparam>
/// <param name="content"></param>
/// <returns></returns>
protected T GetModel<T>()
 where T : BaseModel, new()
{
 var model = new T();
 model.MenuItems = GetMenuItems();

 return model;
}

private IEnumerable<MenuItem> GetMenuItems()
{
 return
 (
 from n in CurrentPage.TopPage().Children
 where n.HasProperty("menuTitle")
 && !n.GetPropertyValue<bool>("hideInMenu")
 select new MenuItem()
 {
 Id = n.Id,
 Title = n.GetPropertyValue<string>("menuTitle"),
 Url = n.Url(),
 ActiveClass = CurrentPage.Path.Contains(n.Id.ToString()) ? "active" : null
 }
);
}

So even all the logic which we need on the masterpage like a menu is done in a controller. This creates a perfect separation of HTML and logic. All the code above is a lot to explain, but it's the basic principle of the Hybrid framework.

If you look at the controllers in the code above you can see that the ActionResult methods all have the DonutOutputCache attribute. This means that the entire controller and view are cached, but parts of the view can be uncached. You can read more about it here: https://github.com/moonpyk/mvcdonutcaching. It makes all the pages extremly fast and because the default controller also has donut cache it means every page get's cached. There is an example on the contact page. You can read about how to use it outside of the Hybrid Framework here.

The hybrid framework contains even more things, but this blog post is getting long enough already. Below you can see the uHangout talk about the Hybrid Framework and I also did a talk at the Umbraco UK Festival 2013.

Online Video Clip

You can download the source code here: https://github.com/jbreuer/Hybrid-Framework-Best-Practices

And this last video shows how you can install the Hybrid Framework:

Online Video Clip

The uSync Soft Shoe Shuffle
— by Marc Goodson
So I've been using uSync, the popular 'Umbraco database to disc' serialization tool created by Kevin Jump of Jumoo for about a year now; just really to put Umbraco doctype changes into git, so that I can work with other devs without a shared database, and to ease moving something I'm working on between my desktop and my laptop.

But everyone's doing that now, that's old hat, so what is this uSync Soft Shoe Shuffle that I've somehow volunteered to demonstrate for 24 days in Umbraco ? I hear you say...

Well it's akin to the tablecloth trick, you know whipping the tablecloth off of the table, and having most; ok ideally all of the plates and cups left on the table: smugly unharmed.

Online Video Clip

Let me try and achieve the same result as these kids but with uSync and Umbraco.

What do I mean ?

Well imagine you have a set of document types that a site has been running on for while and you suddenly realise there's some obvious commonality between them, and it would all be much neater if the doctypes inherited from a common parent doctype that defined the shared properties in one place.

We've all been there, maybe the client changed their mind after the point of sign off or something, it can happen; but the problem now is you can't easily change those doctypes with the site so full of content, without losing or mucking that content up. Or at least that's the vague premise for this experiment.

(Someone will comment below to say there is a package that just does this, so use whatever that is, but right now I'm just interested to see if this might work)

The experiment

So let me show you an example of a manoeuvre, that all the cool kids are calling 'The uSync Soft Shoe Shuffle':

I'm experimenting here on Umbraco 6 with one of the Umbraco 7 starter kits we backported for an Umbraco 6/7 demo a few weeks back.

 [image:]

	
Install uSync

	
Install uSync Content Edition

 [image:]

	
uSync and uSync Content edition have configuration files in /config, that can be a little bit confusing at first, (and also after a while).

To begin with we're going to set uSync to read="true", write="false", attach="true" and versions="false", this is generally how you would normally work with uSync.

 [image:]

Any changes in the uSync files on disk will be 'read' into Umbraco, and uSync will attach itself to Umbraco events for when doctypes etc. change, and serialise those changes to disk.

Similarly for uSync Content edition we will have import="true" and events="true", quite why Mr Jump didn't call those settings the same thing between editions, I don't know...

 [image:]

	
On first install uSync and uSync Content edition will run through your Umbraco installation and serialize existing doctypes etc and content to your /usync folder on disk, have a look, they are there, open them up and see what they contain, can you guess what I'm going to do ?

 [image:]

In the example site, there are 'Text Pages' and 'News Items' and these both have a common rich text editor property called 'bodyText'.

 [image:]

I'm going to add a 'Content' doctype between 'Master' and 'News Item' and Master and 'Text Page', and move the bodyText Property to be defined only on the new Content doctype, without breaking any cups, glasses or plates.

Let the shuffle begin.

	
First create the new Content, doctype, I'm giving it an alias of umbContent, remember that.

 [image:]

then add the bodyText property

 [image:]

	
Because uSync is running in attach mode you can see it has generated the Content folder under master, and the corresponding def.config file contains the serialised details of the new doctype on disk.

 [image:]

 [image:]

	
We're now going to hack the uSync files directly on disk, so we're going to 'turn off' uSync and uSync Content edition - set read & attach to false, set import & events to false - break the web.config and reload the Umbraco site. (very important you do this)

	
Go into the uSync folder on disc, copy the umbTextPage and umbNewsItem folders into the new umbContent folder.

 [image:]

	
Now that uSync is safely turned off, delete all of the content on the site, yes ALL OF THE CONTENT. Delete it, that's what I said, do it now!

 [image:]

	
Next delete the umbNewsItem and umbTextPage doctype, I know it's madness.

 [image:]

	
You should now be getting a bit of a sick feeling in your stomach.

Waving the magic wand

	
On disk open the corresponding def.config files for umbTextFile and umbNewsItem, find the bodyText property definition and delete it,

 [image:]

locate the 'Master' property in the xml definition and change it from umbMaster to umbContent. This will make these doctypes inherit from the new umbContent doctype, and that is where they will pick up their bodyText property from.

 [image:]

	
Now we need to turn on uSync (but NOT uSync Content edition) so in the uSync settings only set read="true", and break the web.config, refresh the site.

	
Say the magic words: 'Reload the nodes', et voila: uSync should have recreated the umbTextPage and umbNewsItem doctypes, nested underneath the umbContent doctype, and things like structure 'shouldn't have been forgotten'

 [image:]

	
Now we're nearly ready to pull the tablecloth, (I mean turn back on uSync Content edition), but first we don't want uSync Content edition to know it has had content before, and so we need to delete it's two mapping xml files which it uses to keep track of local id's between umbraco installs, and are stored in /app_data/temp:

 [image:]

Yanking the tablecloth

	
We are ready, deep breath, count to 3, in the uSync Content edition config file set import="true" and break the web.config one last time, reload the content nodes, and Ta-dah! The content is back.

 [image:]

This works because uSync Content edition serializes content to disk based on doctype alias, and property name alias, in the example above, we haven't changed the doctype alias or the alias of the property name, we've just changed where they are defined and uSync Content edition doesn't really care about that.

 [image:]

Conclusion

So is this useful ? probably not, I was just wondering if it would work, and it sort of does, but I'm not recommending you try this on a live site, plates and hearts will get broken; but hopefully I've managed to give you a bit of an insight into the way that uSync and uSync Content edition work together.

Right well that about wraps it up for the uSync Soft Shoe Shuffle, the cool kids are all here now and they're drinking eggnog and beckoning me to join them, so I'll wish you all a Merry Christmas and leave you with the sounds of the excellent Joe Loss and his Orchestra, and their version of the Soft Shoe Shuffle:

take it away Joe...

Online Video Clip

Credits

Thanks to Kevin Jump for uSync.

This was a:

 [image:]

 [image:]

 [image:]

No More Empty Tabs, Please
— by Chriztian Steinmeier
Take a quick look at this Content section:

 [image: The Content section]

 The Content section

It looks nice, right? Totally following Kim's advice from last year's calendar we've of course provided some meaningful icons for the various document types - what we can't see from that screenshot, is what the editor is faced with on at least three of those nodes - nodes she'll be visiting more than a few times in the first 10-15 of her many sessions editing the website... for instance, she'll be seeing this when she clicks the People or News nodes:

 [image: The Properties tab - hmmm...]

 The Properties tab - hmmm...

Drat! Not useful at all. That Generic properties tab is roughly the equivalent of an empty tab to the editors.

What to do?

So at Vokseværk we've been using a couple of handy data types to remedy this problem: Notes and Render Macro - both of uComponents fame, of course :)

Notes

To minimize the amount of phone-calls regarding "the website you built", you just need to provide the editor with enough information - every property has a description for contextual help (see Doug's "Superhero" post for more info about that one), but sometimes you may wish that you could provide a little general info for the properties collected on that particular tab. The Notes data type lets you do that - it's just a WYSIWYG editor where you can add text, bullets, images etc. to explain the purpose of the document, like this:

 [image: A simple note can help a lot]

 A simple note can help a lot

Render Macro

If you have a section like the aforementioned People section with a lot of people added, it would be great to have kind of a dashboard or overview of them sitting right there on the top node, which otherwise wouldn't be of much use, right? So using the Render Macro data type, you can do pretty much anything you already know how to do on the front-end, only it's being rendered in the back-office instead.

So instead of an empty tab, our editors now see this when they click on the People node:

 [image: A better way to use the People node (images from the uiFaces project)]

 A better way to use the People node (images from the uiFaces project)

So much more useful - it's way faster for the editor to quickly glance over the images and find the one she's going to edit - of course the images are links to the actual Person nodes so it's a matter of clicking the image to get to the info.

Another very useful scenario is the News section - here it might make sense to render a table with the title, date and author of the posts - maybe even add some client-side sorting & filtering to make it really easy for the editors to get to the specific node faster than wading through the content tree:

 [image: The News overview]

 The News overview

Of course, I hope (fingers crossed) that the "Container Type" functionality of Umbraco 7 will eliminate this particular use case :-)

How did you code this?

Code-wise it's just like a regular macro - I use XSLT but you should be able to use any other language allowed in a macro (please correct me if I'm wrong).

We have a GitHub project for this, that you could use as a starter.

Thanks!

So, if you've been doing similar things in your solutions, please share them in the comments, so we can learn a trick or two.
Sharing is caring - The 301 Url Tracker
— by Stefan Kip
This post is all about the 301 Url Tracker package, which I've built 3,5 years ago as my graduation project here at InfoCaster, which I passed by the way ;-)

Richard Soeteman came up with the idea for this package (have you checked his excellent SEO Checker package by the way?) and thought it would be nice for me to build it, and so it began!
 I'd also like to tell a bit about the open-source philosophy at the company I work for, InfoCaster, and the single assembly practice, which I've used for version 2 of the Url Tracker.

301 Url Tracker

Maybe you've heard about it or even used it, I do hope so! If not, this paragraph is for you! This package helps you with managing URLs in you umbraco website. It's a very nifty tool for redirecting indexed URLs of your old website to your new umbraco website. This way you won't lose the current SEO ranking. In fact, it's possible to create any redirect you want, even if a page already exists for the chosen URL to redirect from (since v2.4.0). If you want to learn more about the package, have a look at the project's page!

 [image: The Url Tracker overview UI]

 The Url Tracker overview UI

Version 2 of the Url Tracker is much better than the first version. It has been rebuilt from the ground up to support multi-domain umbraco websites, logging and other nice features version 1 didn't have. Besides that, the quality of the code is a lot better. I've also started using Github for source control and maintained a detailed changelog for every version 2 release.

I've chosen to use a single-assembly approach for version 2, because it wat such a hassle to do upgrades with v1 (from v1.x to v1.vNext). Also I've tried to change as few files as possible. Version 2 only makes a change to the Dashboard.config file. The HttpModule is configured dynamically by using the DynamicModuleUtility.RegisterModule method.
The huge benefit of this approach is that it's really easy to update the Url Tracker; just replace the assembly or install the newer version via the umbraco back-office.

InfoCaster's open-source philosophy

At InfoCaster we strongly believe in open-source and love Microsoft .Net. This seems to be a contradicting affection, but it's exactly why we've selected Umbraco in the first place. Although we've had some serious issues with Umbraco in the beginning, we have kept using Umbraco and promote it as a platform to our customers.

In the true spirit of open-source, at InfoCaster, we think that using open-source also means contributing to the community. We have actively been part of the community ever since starting and using Umbraco. It was a logical step for us to create an open source package when we ran into 301 redirecting problems for our customers. Having this feature in Umbraco would be beneficial for all Umbraco users, instead of just our clients.

Keeping Umbraco competitive and free is good for the reputation of Umbraco, a good reputation for Umbraco is also good for us.
Even when we have gotten feedback that the improved second version of the Url Tracker should become a commercial package, we never doubted our decision to make it open-source and free for anybody to use.

If we all keep sharing and caring about Umbraco and each others tools, I think we can stay ahead of other open and even closed source CMS vendors.

 [image: Discussion on Twitter about commercializing the UrlTracker]

 Discussion on Twitter about commercializing the UrlTracker

Single assembly packaging

I really wanted to keep version 2 of the UrlTracker as simple as possible, especially when it comes to installing, configuring and upgrading the package! That's why I've decided to make sure the UrlTracker consists of a single assembly, nothing more. This assembly contains all resources used by the UrlTracker, like CSS, javascript, images and SQL files, just like uComponents does. I've also made a built-in installer to install the SQL table, dashboard entry and perform some additional checks.

When I started developing this package, I knew very little about how to build a complete package into a single assembly, so I started off by looking at the uComponents source and searching for information on the web about this topic. Inclusing basic resources like CSS, javascript and images wasn't that big of a deal, as long as you'll set the Build Action to "Embedded Resource" and add an entry in the AssemblyInfo.cs file:

[assembly: WebResource("InfoCaster.Umbraco.UrlTracker.UI.res.css.urltracker.css", "text/css", PerformSubstitution = true)]
An example entry for the AssemblyInfo.cs file

Setting PerformSubstitution to true gives you the ability to reference embedded image files within your stylesheet:

[class^="icon-"],
[class*=" icon-"] {
	background-image: url('<%= WebResource("InfoCaster.Umbraco.UrlTracker.UI.res.img.glyphicons-halflings.png") %>');
}

And here's an example of loading static resources in your mark-up:

<link rel="stylesheet" type="text/css" href="<%= Page.ClientScript.GetWebResourceUrl(typeof(UrlTrackerResources), "InfoCaster.Umbraco.UrlTracker.UI.res.css.urltracker.css") %>" />
<script type="text/javascript" src="<%= Page.ClientScript.GetWebResourceUrl(typeof(UrlTrackerResources), "InfoCaster.Umbraco.UrlTracker.UI.res.js.main.js") %>"></script>
Using embedded static files, like CSS and javascript

I just had to write my own VirtualPathProvider. By using this provider I was able to load usercontrols by using the registered Virtual Path, in this case "/Umbraco/UrlTracker/".
For example, when I need to load a UserControl into the page, I define the UserControl as a protected variable in the page's class and load it like this:

protected CustomView icCustomView;

protected override void OnInit(EventArgs e)
{
	base.OnInit(e);
	
	// Load the UserControl from the assembly
	icCustomView = (CustomView)LoadControl("/Umbraco/UrlTracker/InfoCaster.Umbraco.UrlTracker.UI.UserControls.CustomView.ascx");
	// Add to a Panel or PlaceHolder
	pnlEditValidationGroup.Controls.Add(icCustomView);
}
Loading a UserControl by using the registered VirtualPath

Final words

Building version 2 of the Url Tracker was really awesome and I've learned a lot from it! We hope you'll enjoy using this package as much as we do. Curious to know what is under the hood? Just visit Github and download the source!

I really hope package developers will think about the update process and start using the single assembly technique whenever they can, it's really not that hard.

An updated version compatible with umbraco v7 will be available soon! If you have any further questions, or if you'd like to tell me what you think of this post, please do not hesitate to contact me on Twitter.
Umbraco V7 Compatible packages
— by Richard Soeteman
Umbraco V7 is released almost a month ago. I'm working hard to make the current packages compatible with Umbraco V7. I've already converted CMSImport, Mediaprotect and MemberExport. The process of converting is pretty straight forward but I had to make some tweaks in my packages that I want to share in this article.

Maybe it's just me, but I want to have a single package installer for all supported versions of Umbraco. Otherwise users will download the wrong version of the package and their environment will explode. You may guess who gets blamed ;-). This is the way I developed my packages in the past and I really want to continue this when making my packages compatible with Umbraco V7.

How to make packages backwards compatible?

All you need to do to make a package compatible with an older version of Umbraco is to compile against that version. For example CMSImport is compatible with version 4.5.2 of Umbraco and above so the whole project is compiled against that version. This ensures I can only use the classes and methods available in that version. This method works very well for me, even with the new Content and media services. The Umbraco core team did a really great job to ensure the old methods would still work.

Then V7 came...

With V7 not only the UI layer changed from Webforms to Angular JS but because of that the following breaking changes got introduced:

	The ContentTreeController replaced the old BaseTree

	Legacy events won't execute when they are initiated form the new ContentTreeController

	Legacy data types don't work anymore

 [image:]

This was a serious issue for me. It took me a few days to figure out what to do. I realized quickly that I needed to split up parts of the functionality into multiple projects. For example all event handlers were part of the MediaProtect assembly in previous releases but are now separated into multiple Assemblies:

	MediaProtect.Events . Targeted at Umbraco V7

	MediaProtect.Events.Legacy. Targeted at all versions before Umbraco V7

This allowed me to use the new events in the MediaProtect.Events which references the Umbraco V7 assemblies, the legacy events project still references the old 4.5.2 assemblies.

Packager challenge

This split-up of assemblies fixed the backwards compatibility issue I had, but introduced a new problem. How can I create an installer that works on all versions of Umbraco? Usually this isn't an issue but since we use some of the methods introduced in umbraco V7 for the MediaProtect.Events project that don't exist in older versions of Umbraco the logfiles would have been full with missing method exceptions.

Package actions to the rescue

If you are familiar with creating packages for Umbraco. You've probably heard of package actions. Package actions are simple classes that you can include in your assembly and gets executed by the Umbraco package installer by providing an XML Snippet for configuration telling the action what to do.

In this case I wrote a package action that I call ConditionalFileDeploy that gets a source and target location. It also can take a min and optional max version. During install it will inspect the Umbraco version number and when it meets the version criteria it will copy the file to the bin folder and otherwise delete it.

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Web;
using System.Xml;
using MediaProtect.Umbraco.PackageActions.Helpers;
using umbraco.BusinessLogic;
using umbraco.cms.businesslogic.packager.standardPackageActions;
using umbraco.interfaces;

namespace MediaProtect.Umbraco.PackageActions
{
 /// <summary>
 /// Copies a file when it doesn't exists in the target location
 /// </summary>
 public class ConditionalFileCopyAction : IPackageAction
 {
 /// <summary>
 /// Executes action
 /// </summary>
 /// <param name="packageName">Name of the package.</param>
 /// <param name="xmlNode">The XML node.</param>
 /// <returns></returns>
 public bool Execute(string packageName, XmlNode xmlNode)
 {
 var source = HttpContext.Current.Server.MapPath(XmlHelper.GetAttributeValueFromNode(xmlNode, "source"));
 var target = HttpContext.Current.Server.MapPath(XmlHelper.GetAttributeValueFromNode(xmlNode, "target"));
 var minversion = new UmbracoVersionInfo(XmlHelper.GetAttributeValueFromNode(xmlNode, "minversion"));
 var maxversion = new UmbracoVersionInfo(XmlHelper.GetAttributeValueFromNode(xmlNode, "maxversion"));

 Log.Add(LogTypes.Debug, -1, string.Format("Executing Package Action {0} with Params Source:{1} target:{2} minversion:{3} maxversion{4} currentVersion{5}", Alias(), source, target, minversion, maxversion, UmbracoVersionInfo.Current));

 if (CanCopy(UmbracoVersionInfo.Current,minversion,maxversion))
 {
 //File doesn't exists
 //Make sure folder gets created
 var targetFolder = Path.GetDirectoryName(target);
 Directory.CreateDirectory(targetFolder);

 //Copy file
 File.Copy(source, target);
 }
 File.Delete(source);
 return true;
 }

 /// <summary>
 /// Determines whether the specified version is valid to copy.
 /// </summary>
 /// <param name="currentVersion">The current version.</param>
 /// <param name="minVersion">The min version.</param>
 /// <param name="maxVersion">The max version.</param>
 /// <returns>
 /// <c>true</c> if [is valid version] [the specified current version]; otherwise, <c>false</c>.
 /// </returns>
 public bool CanCopy(UmbracoVersionInfo currentVersion, UmbracoVersionInfo minVersion,
 UmbracoVersionInfo maxVersion)
 {
 return currentVersion.IsGreaterOrEqual(minVersion) && (!maxVersion.IsSpecified() || currentVersion.IsSmallerOrEqual(maxVersion));
 }

 public string Alias()
 {
 return "MediaProtect_ConditionalFileCopyAction";
 }

 public bool Undo(string packageName, XmlNode xmlData)
 {
 return true;
 }

 public XmlNode SampleXml()
 {
 return helper.parseStringToXmlNode(string.Format("<Action runat=\"install\" alias=\"{0}\" source=\"~/app_data/temp/package.config\" target=\"~/umbraco/plugins/package/package.config\" minversion=\"4\" maxversion=\"6.9.1\" />", Alias()));
 }
 }
}

Conditional file copy action

Using the above package action I could include both dll's into my package but instead of specifying the /bin folder I specified the app_data/temp folder as target location

<file>
 <guid>Mediaprotect.Events.dll</guid>
 <orgPath>/app_data/temp/Mediaprotect</orgPath>
 <orgName>Mediaprotect.Events.dll</orgName>
</file>
<file>
 <guid>Mediaprotect.Events.Legacy.dll</guid>
 <orgPath>/app_data/temp/Mediaprotect</orgPath>
 <orgName>Mediaprotect.Events.Legacy.dll</orgName>
</file>

Package files

And use this snippet to copy the correct dll

<Action runat="install" alias="MediaProtect_ConditionalFileCopyAction" source="~/app_data/temp/Mediaprotect/Mediaprotect.Events.dll" target="~/bin/Mediaprotect.Events.dll" minversion="7" />
<Action runat="install" alias="MediaProtect_ConditionalFileCopyAction" source="~/app_data/temp/Mediaprotect/Mediaprotect.Events.Legacy.dll" target="~/bin/Mediaprotect.Events.Legacy.dll" minversion="4" maxversion="6.*" />

Package actions

This magic XML snippet basically says Copy MediaProtect.Events.dll to the bin folder when the Umbraco version is 7 or higher. Or copy MediaProtect.Events.Legacy.dll to the bin folder when the Umbraco between 4 and 6.

UI tips

So that was all to make sure our packages would still work in Umbraco V7 and still use a single package installer file. Of course it didn't look "Belle" without a few UI changes. What I did was creating a method to check which icon to display in the tree. Something similar Tim used in his blog post.

 [image:]

Another thing I found that the new UI had nice looking buttons. Could be just Twitter bootstrap but I'm not familiar with this yet. But when installing Media protect buttons were Ugly compared to the ones used by Umbraco. This could easily be solved by adding some css classes to the buttons.

	btn btn-success

	btn btn-danger

	btn

One last thing make sure to use the default Umbraco controls as described on the upgrade instructions page. This ensures that the lay-out of the page looks consistent.

Hope you can use this article when updating your packages for Umbraco V7 during the Christmas break.
What's in a Document Type anyway?
— by Simon Steed
Umbraco, we all love it in some way, shape or another - however there are some people that get really frustrated with it, in particular the mysterious Document Type - is this you? This article is aimed at people like you and will hopefully demystify it somewhat and have some simple examples for you to use in your projects.

I'm not going to touch templates, CSS, scripts, Data Types etc. - they may come in a future article if people want them - we are here for one thing and one thing only...

Document Types - what's in a name?

In short, this is the core of Umbraco - yes we have MVC, Webforms, DataTypes, Templates, CSS, Properties, Shenanigans and more but without a Document Type, you don't really have a content editable site!

In short, a Doctype (short name from now on, I'm lazy!), is a storage container for your data on the pages in your website.

There you go, that's it - dead simple - it stores stuff... well, sort of.

What do they do?

What it allows you to do is compartmentalise (big word) your pages into silos of information that your website uses to display data to your users.

Within a Doctype, you can:

	Set icons to identify to the user what it typically is, i.e. for a News Article, you may have a newspaper icon. User sees this icon in the content area and knows it's a News Article.

	Set a friendly name and description for it

	Define what other Doctypes can be created underneath that type, i.e. you may have a folder and want to only allow a News Article Doctype to be created under that - no problem, tick the item in the Structure tab

	Choose which templates are allowed; Note I mention templates in plural, not singular - you can create many templates or layouts that can represent your data in many different ways

	Setup tabs to categorise your content pages, i.e. SEO, Umbraco, Content, Media etc.

	Finally you can setup properties which are mini data items that store your data within the Doctype

The Doctype effectively brings all the above together in one single unit and presents to the user in the guise of allowing them to create a content page.

Let's get cracking

Let's create one here for a typical Homepage:

	Go to your Umbraco installation, click on Settings and right click on Document Types to select Create

[image: 1]

	Add one called Homepage - tick the box to create a matching template and leave the master to None

	Set a friendly name and description and hell, change the icon as well whilst you are at it

[image: 2]

	On the Structure tab, set Allow at Root - this means you can create this page at the root level of your content area

[image: 3]

	Now go to the Tabs page and create some tabs, call one Content, another Media and one SEO

[image: 4]

	Hit the save button.

Now you could actually go to the content area of your site and create a new page using this document type - go on try it and see what you get.

[image: 5]

Welcome back... You did try it didn't you? Ok, what you should have seen was a new node (geek talk for a content item or web page in the content area). When you clicked on this node with it's new fancy icon etc., you would have seen a few tabs, i.e. Content, Media, SEO and Properties.

The only one that would have anything there would be Properties - these are the default Umbraco properties and some useful ones there too - learn them, you will use them, trust me.

OK that's good but it doesn't do anything - BINGO, you must be listening!

Expanding our Doctype

Let's add something useful like some data properties you can set. Back to our Settings section, open the Doctype you just created and then hit the Generic Properties tab.

Click 'Click here to add a new property' - tip: you can hit the text which is usually easier than hitting the drop down arrow - it is for me anyway.

Now fill in the following:

Name: My First Property

Alias: myFirstProperty (this will be automatic when you add the Name)

Type: TextString

Tab: Content

Mandatory: unchecked

Validation: leave empty

Description: A funky doody property item

Now hit Save then head back to the Content section and the new page you created earlier. Notice you can now see a textbox called My First Property with the description alongside it?

[image: 6]

Cool eh? - well basically you can add as many different types of properties into the Generic Properties tab of your Doctype as you wish. So go ahead, add some properties with different types and see what they all do.

Notice that if you add some and set the Tab to be Media or SEO etc., when you visit the content page, they are kept nicely together for you. This is a good way for you to present logical data to your users - throw things like Page Title, Meta Keywords, Meta Description into the SEO tab, once it's set it's infrequently updated again so why have them in the content area?

Heres what a more populated one would look like both from the Doctype and the Content page views:

[image: 7]

[image: 8]

[image: 9]

[image: 10]

In a nutshell

A very simple and short article to help newbies to understand one of the main areas of Umbraco. Doctypes are extremely powerful; you can nest them, which inherit properties from the parents through to all the children. You can setup complex data structures to store your data. Adding packages like "Document Type Fieldsets" allows you to group your properties into their own mini containers in the Content area - mega useful and so on.

Think of a Doctype in the context of building a new house.

Architect = Doctype - defines the structure of the page, what properties it will contain etc.

House = Page in the content area.

Windows, Doors, Window Sills, Roof tiles - all properties

Red tile, round window - specific data stored for the property in the Doctype

Have a very merry xmas and an even more productive new year!
One member to rule them all
— by Jacob Polden and Paul Marden
Background

As part of the upgrade process moving one of our clients to Umbraco 6 from 4.7, we were asked to make a significant change for which we couldn't find one single "how-to" resource".

The client has a public marketing site and a private members area for teachers to download training materials both of which run on Umbraco as well as a separate asp.net webforms web app enabling teachers to register for and book training courses.

Currently the private members site and web app are disconnected. Users have different member profiles for the two systems, and so have to log on to each separately. Our client wants us to implement a shared security context so that the two systems can share profile information and implement single sign-on.

Final delivery is still ongoing, but this article will cover the proof of concept we built which shows how we will achieve this. We set out to:

	demonstrate that a .NET Webforms application can share a security context with an Umbraco 6 MVC membership site;

	demonstrate that these two applications can share:

	a membership provider;

	a member database, thereby sharing usernames and passwords;

	demonstrate single sign-on [1] i.e.:

	Sign onto one site and be logged in immediately to the other

	Log off either site and immediately be logged off the other as well

Overview

The Proof of Concept was run from a single local development machine on which we ran:

	IIS 7

	SQL Server 2008 R2

	Umbraco 6.1.6

Figure 1, below outlines the technical solution that was created.

[image: Figure1]

Figure 1: Proof of concept system architecture diagram

IIS was configured to run two separate AppPools. Although the applications are running on the same machine both applications are running independently of each other.

Shared membership provider

For the proof of concept we had to make a small change to the default Umbraco Membership Provider. Both applications shared the same code base for the membership provider, enabling both applications to communicate with the same database of members.

When you log into the site the default Umbraco Membership Provider persists data by using the m.Save() method. However our Webapp cannot implement this method as m.Save() is a method on the Umbraco Member object that commits the instantiated member object to the database. The Webapp doesn't contain any Umbraco binaries so for the sake of the proof of concept we commented out this method call to avoid an exception being thrown.

line 803-805

		// persist data
		//if (m != null)
		// m.Save();

For future work we would customise the membership provider more fully to allow us to have complete Umbraco functionality and access the same member database.

Member controls for WebForms

For the webforms app we use the default ASP login controls:

	LoginName - To see who is currently logged in

	LoginStatus - To see if we are logged in

	Login - The default ASP control to actually perform the login, it utilises the membership provider in the web.config

<form runat="server">
 <asp:LoginName ID="LoginName1" runat="server" />
 <asp:LoginStatus ID="LoginStatus1" runat="server" />
 <asp:Login ID="Login1" runat="server"></asp:Login>
 </form>

Creating Member Login Controls for Umbraco 6

The Umbraco 6 MVC login setup is a bit more complicated. Due to the nature of MVC we have to create our own authentication methods and controller. We used this 24days in Umbraco article as reference [2].

MemberLoginSurfaceController.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Security;
using umbraco.cms.businesslogic.member;
using Umbraco.Web.Mvc;
using Umbraco6SLSite.Models;

namespace Umbraco6SLSite.Controllers
{
 public class MemberLoginSurfaceController : SurfaceController
 {

 [HttpGet]
 [ActionName("MemberLogin")]
 public ActionResult MemberLoginGet()
 {
 return PartialView("MemberLogin", new MemberLoginModel());
 }

 // The MemberLogout Action signs out the user and redirects to the site home page:

 [HttpGet]
 public ActionResult MemberLogout()
 {
 Session.Clear();
 FormsAuthentication.SignOut();
 return Redirect("/");
 }

 [HttpPost]
 [ActionName("MemberLogin")]
 public ActionResult MemberLogin(MemberLoginModel model)
 {
 //Check if the dat posted is valid (All required's & email set in email field)
 if (!ModelState.IsValid)
 {
 //Not valid - so lets return the user back to the view with the data they entered still prepopulated
 return CurrentUmbracoPage();
 }

 if (Membership.ValidateUser(model.Username, model.Password))
 {
 FormsAuthentication.SetAuthCookie(model.Username, true);
 return RedirectToCurrentUmbracoPage();
 }
 else
 {
 TempData["Status"] = "Invalid username or password";
 return RedirectToCurrentUmbracoPage();
 }
 }

 }
}

MemberLoginModel.cs

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.Linq;
using System.Web;

namespace Umbraco6SLSite.Models
{
 public class MemberLoginModel
 {
 [Required, Display(Name = "Enter your user name")]
 public string Username { get; set; }

 [Required, Display(Name = "Password"), DataType(DataType.Password)]
 public string Password { get; set; }
 }

}

Login.cshtml

@Html.Action("MemberLogin","MemberLoginSurface")

Configure IIS for Single Sign-on

By default IIS stores session data in memory for each application [See 3]. However, we want to share this session between the two applications.

So each has been configured to store session information in a separate ASP Session Database using the SessionStateMode=SQLServer setting in web.config:

<sessionState mode="SQLServer" cookieless="false" timeout="45"
 sqlConnectionString="data source=localhost;user id=sa;password=pA55w0rd" />

The database itself being created using the Aspnet_regsql.exe tool [See 3].

To setup the ASPState database on your instance:

aspnet_regsql.exe -S SampleSqlServer -E -ssadd -sstype p

Web.config

 <authentication mode="Forms">
 <forms name="yourAuthCookie" loginUrl="login.aspx" protection="All" path="ourproject.local" domain="ourproject.local" />
 </authentication>

The Webforms app shows another strength in its ability to be rapidly developed, the default asp login reacts to the configuration in the web.config. The code snippet below is the same as the MVC configuration. That configuration alone is enough to replicate the same result as the MVC app.

Web.config

 <authentication mode="Forms">
 <forms name="yourAuthCookie" loginUrl="login.aspx" protection="All" path="ourproject.local" domain="ourproject.local" />
 </authentication>

Putting it all together

The following screenshots run through the login and logout process demonstrating the single sign on:

[image: Figure 21][image: Figure 22]

Figure 2.

We can see here that both of the applications are logged out. Notice also how they share the same domain name "ourproject".

[image: Figure 31][image: Figure 32]

Figure 3.

In this image you can see I have entered login details for one of applications (app) and no details have been entered on the other (umbraco).

[image: Figure 41][image: Figure 42]

Figure 4.

We can now see how both applications are showing the user is authenticated and logged in. We only entered our login details on the "app" application and yet we are simultaneously logged into the "umbraco" application.

[image: Figure 51][image: Figure 52]

Figure 5.

We have now hit the "log out" link. Both applications are now reporting no users are currently logged in.

This outlines the basic concept of a single login process, for future work we would include the ability to reset passwords and other user management tools.

Next steps

So far this is just a proof of concept -- we've got a lot of work before going live. For example, we need to do a lot more testing before going live, making sure that our Custom Membership provider doesn't break core Umbraco functionality. Our client is expecting a big increase in the number of members on the site, so we're be developing some new membership management tools to help them.

References

Below are the links I used to aid my development for this proof of concept:

	Single sign on, Wikipedia http://en.wikipedia.org/wiki/Single_sign-on

	Create a login with Umbraco MVC /umbraco/2012/creating-a-login-form-with-umbraco-mvc-surfacecontroller/

	Session-State Modes, MSDN, http://msdn.microsoft.com/en-us/library/ms178586.ASPX

	FormsAuthentication.SetAuthCookie Method, MSDN http://msdn.microsoft.com/en-us/library/system.web.security.formsauthentication.setauthcookie(v=vs.110).aspx

Injecting the backoffice into the backoffice
— by Merijn van Mourik
When I am spending time with the Umbraco 7 backoffice, it's so nice I would almost forget there are other backoffice applications too. Yes, those nasty dynosaurs which basically have my quality time for diner. All those hours I spent on data integration.... Why not do some cool stuff with dependency injection and inversion of control. And save some time... so you can spend more time with Belle.

First for some theory. A formal definition of a backoffice could be:

area in a bank where checks are paid, deposits and withdrawals are posted to accounts, and interest earned on deposits is credited to the account holders

When I translate this to e-commerce it happens a customer purchases something at a webshop. Then the ERP system receives the data and processes a journal entry of the purchase. And the CRM systems gets an update with the e-mail address, the product SKU and other relevant data. So the marketing department can target their e-mails campaigns.

To implement this use case I would have the following data.

<order>
 <id>12345</id>
	<orderDate>2013-12-23</orderDate>
	<firstName>Merijn</firstName>
	<lastName>van Mourik</lastName>
	<email>mmourik(at)gmail(dot)com</email>
	<sku>1234</sku>
</order>
Houston we got an order!

After the order is finalized, I usually store it somewhere on a disk. Then at a certain point in time a batch job gets triggered and picks it up for further processing.

Wouldn't it nice if I can just send it to CRM or ERP without having to worry about making connections to other servers. Or scheduling all kind of batch jobs. What if I could have just one single command to get the data to its destination.

RegisterOrder order = new RegisterOrder();

order.id = "12345";
order.orderDate = "2013-12-23";
order.firstName = "Merijn";
order.lastName = "van Mourik";
order.email = "mmourik(at)gmail(dot)com";
order.sku = "1234";

IBus bus = ServiceBus.Bus;

bus.Send(order);
Get me to the backoffice!

The order is just a plain old data transfer object, a class. Then the bus.Send() does the magic.

The bus.Send() can also be used from inside a MVC controller. Then it would look like this:

public class OrderConfirmationController :
 Umbraco.Web.Mvc.RenderMvcController
{
 public IBus bus { get; set; }

 private static readonly ILog Log = LogManager
 .GetLogger(MethodBase.GetCurrentMethod().DeclaringType);

 public override ActionResult Index(RenderModel model)
 {
//
	bus.Send(order);
//
 }
}
Inject me!

With NServiceBus the bus.Send() magic comes to reality!

NServiceBus takes the responsiblity for sending data over the wire. It's just like how ethernet cards wire PC's to the local area network. You configure some addresses and NServiceBus does the job. It uses MSMQ as transport mechanism, but can use other mechanisms as well. It can also take care of scheduling and long-running processes. It just injects itself in your code, and your code stays neat and clean!

Before I dive into the code further. For me 2013 was a year when I found out about some amazing technologies. I got certified under guidance of Per and Sebastiaan. Next I built my first e-commerce website with Umbraco and TeaCommerce. I met those unicorns doing nasty stuff with HTML. Thanks Per for introducing me to AngularJs. I had loads of fun with TeaCommerce, I got certified on that too. Thanks Anders! It also was the year where I found out how to get rid of batch processing. Thanks Udi Dahan for introducing me to NServiceBus. Thanks community for building great open source software. Which makes my life fun.

Now let's get my feet back on the ground. How to inject NServiceBus right into the Umbraco controllers and event handlers? How to transport your business data to the backoffice - the easy way?

First we need to startup the bus. This is done in the startup handler of Umbraco.

public void OnApplicationStarted(UmbracoApplicationBase umbracoApplication,
 ApplicationContext applicationContext)
{
	ServiceBus.Init();
}

Get on the bus!

The ServiceBus.Init() uses a singleton, which ensures there is only one instance at the same time. NServiceBus needs several seconds to initialize. You only want to do this once.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using NServiceBus;

namespace Umbraco.Extensions
{
 public static class ServiceBus
 {
 public static IBus Bus { get; private set; }

 public static void Init()
 {
 if (Bus != null)
 return;

 lock (typeof(ServiceBus))
 {
 if (Bus != null)
 return;
 Bus = Configure.With(AllAssemblies.Except("sqlceca40")
 .And("sqlcecompact40").And("sqlceer40en").And("sqlceme40")
 .And("sqlceqp40").And("sqlcese40").And("msvcr90"))
 .Log4Net()
 .DefaultBuilder()
 .ForMVC() // <------ here is the line that
 // registers everything in MVC
 .UseTransport<Msmq>()
 .UnicastBus()
 .SendOnly();
 }
 }
 }
}
One and only one!

NServiceBus uses a fluent API which makes it really easy to configure it. It's very well documented. At startup each and every dll inside the bin folder is scanned, so NServiceBus can inject itself. It uses AutoFac, but also other containers are supported. Some dll's are troublemakers, you can just Except them like I did.

The SendOnly() configuration is important. It will make sure the endpoint only sends messages, and skips some extra unneeded configuration. So everything stays as fast as possible. The receiving party does not have this, this will be a service endpoint that does full processing. But it does not have to be located at your Umbraco server. So you are really offload backoffice processing from your frontend server. NServiceBus has even load-balancing by default, so if you need heavy processing, you can easily add worker nodes too.

using System;
using System.Linq;
using NServiceBus;
using System.Web.Mvc;
using System.Web.Http;

public static class NServiceBusConfig
{
 public static Configure ForMVC(this Configure configure)
 {
 // Register our http controller activator with NSB
 configure.Configurer.RegisterSingleton(typeof(IControllerActivator),
 new NServiceBusControllerActivator());

 // Find every http controller class so that we can register it
 var controllers = Configure.TypesToScan
 .Where(t => typeof(IController).IsAssignableFrom(t));

 // Register each http controller class with the NServiceBus container
 foreach (Type type in controllers)
 configure.Configurer.ConfigureComponent(type, DependencyLifecycle.InstancePerCall);

 //Configure any other dependencies you need here

 // Set the MVC dependency resolver to use our resolver
 DependencyResolver.SetResolver(new NServiceBusDependencyResolverAdapter(configure.Builder));

 // Required by the fluent configuration semantics
 return configure;
 }
}
Get me my configuration!

The ForMVC() part connects NServiceBus to MVC. From where it can do it's funky stuff with dependency resolvers.

using System;
using System.Web.Mvc;

public class NServiceBusControllerActivator : IControllerActivator
{
 public IController Create(System.Web.Routing.RequestContext requestContext,
	 Type controllerType)
 {
 return DependencyResolver.Current
 .GetService(controllerType) as IController;
 }
}
Activate me!

With the NServiceBusControllerActivator in place, MVC is able to resolve the dependencies ot NServiceBus.

using System;
using System.Collections.Generic;
using NServiceBus.ObjectBuilder;
using System.Web.Mvc;

public class NServiceBusDependencyResolverAdapter : IDependencyResolver
{
 private IBuilder builder;

 public NServiceBusDependencyResolverAdapter(IBuilder builder)
 {
 this.builder = builder;
 }

 public object GetService(Type serviceType)
 {
 if (typeof(IController).IsAssignableFrom(serviceType))
 {
 return builder.Build(serviceType);
 }

 return null;
 }

 public IEnumerable<object> GetServices(Type serviceType)
 {
 if (typeof(IController).IsAssignableFrom(serviceType))
 {
 return builder.BuildAll(serviceType);
 }
 else
 {
 return new List<object>();
 }
 }
}
Let's resolve the dependencies!

And there we have it. Apart from the controller or event handler there are 5 small files of code which do the plumbing. And it just works...

There is one little missing piece. How do CRM and ERP process the same message? This is the best part where the pub-sub pattern enters the game. Basically CRM and ERP subscribe to the message you send on the bus. And NServiceBus is just getting it done.

This all worked for me pretty well, it's a valuable extension to my toolbelt. I use it daily in a production environment where we process a lot of orders. I hope you will soon benefit from it too! I'm currently working on an example on GitHub, you can already have a look at the code. It's based upon the Hybrid Framework from Jeroen and Jeavon.

Happy coding!

Merijn

References:

	Injecting NServiceBus into ASP.NET MVC 3

	Injecting NServiceBus into ASP.NET WebApi

Dashboard overload
— by Mads Krohn
Hi there! I'm Mads and I work at Eksponent. Today, I'm going to show off yet another dashboard for the backoffice.

Chriztian already covered the topic some days ago with a few awesome dashboards of his own, but a dashboard can be many different things, and I believe there is still plenty of ways that we can help make the life easier for our clients.

The dashboard I'm building today consists of a datagrid containing useful information on all the pages in the content tree. For this demo I've used one of the default starterkits with minimal content, but as I'm using Examine as the data store, the dashboard can easily support thousands of nodes making it ideal for both small and large sites.

I have chosen to separate the post into two parts. The first part is fairly basic and makes use of what we got available in Umbraco out of the box. In the second part I will go into more advanced topics extending on the things covered in the first part. There is a lot to cover, so without further ado, lets get started.

Part 1

Installing Umbraco

You can run Umbraco in any way you like, but for this demo I installed it straight from Nuget in Visual Studio. To simplify the setup I'm running on an embedded SQL CE database. Since this demo is based on v6, I'm using the new api whenever I can, though everything can be backported to the v4 api if need be.

 [image: A vanilla Umbraco install complete with all the default dashboard stuff.]

 A vanilla Umbraco install complete with all the default dashboard stuff.

Registering a user control

First I need a new User Control that will act as my dashboard container. Umbraco (conveniently) already has a folder named "usercontrols" so that is where I'm gonna put it. Depending on your developer setup, there are different ways to create a user control, so I won't go in to that here.

<%@ Control Language="C#" AutoEventWireup="true" CodeBehind="View.ascx.cs" Inherits="Demo.usercontrols.dashboards.PageOverview.View" %>
<p>This will be our dashboard container</p>
That is one fine user control!

Next I need to register it in the Dashboard.config file located in the config folder. I add the new dashboard control and get rid of the other default ones.

<section alias="StartupDashboardSection">
 <access>
 <deny>translator</deny>
 </access>
 <areas>
 <area>content</area>
 </areas>
 <tab caption="Dashboard">
 <control panelCaption="">/usercontrols/dashboards/PageOverview/View.ascx</control>
 </tab>
 <tab caption="Change Password">
 <control addPanel="true">/umbraco/dashboard/changepassword.ascx</control>
 </tab>
</section>
Let's keep the dashboard for changing password, that one is handy!

Now that the dashboard container is done, let's put in some content.

Setting up the datagrid

A datagrid is basically an enhanced table with data in it. A good datagrid provides functionality such as paging, sorting, filtering and searching. There are lots of different datagrids out there and they can vary hugely in functionality and ease of use. For this demo I have chosen to use a framework called Fuelux that builds upon Bootstrap. Fuelux offers a really simple and stylish yet very flexible data grid, just what I need.

I'll admit though, that the structure of the framework is a bit hard to figure out, and I ended up having to load the entire thing. Apparently, the datagrid component uses a lot of different stuff from other components, so it can be hard to break them apart. Luckily, script size isn't that much of a concern in the backoffice, so let's accept that for now and move on.

To load the datagrid assets I'm using the Umbraco Client Dependency Framework. CDF helps manage css and javascript dependencies and handles all the boring stuff like minification, compression, caching and so on. You can read more about CDF here.

<%@ Control Language="C#" AutoEventWireup="true" CodeBehind="View.ascx.cs" Inherits="Demo.usercontrols.dashboards.PageOverview.View" %>
<%@ Register TagPrefix="CD" Namespace="ClientDependency.Core.Controls" Assembly="ClientDependency.Core" %>
<CD:CssInclude runat="server" FilePath="/userControls/dashboards/PageOverview/fuelux.css" />
<CD:JsInclude runat="server" FilePath="/userControls/dashboards/PageOverview/underscore.min.js" />
<CD:JsInclude runat="server" FilePath="/userControls/dashboards/PageOverview/fuelux.loader.js" />
<CD:JsInclude runat="server" FilePath="/userControls/dashboards/PageOverview/fuelux.datagrid.datasource.js" />
<!-- Just a few custom styles I'm going to need, nothing fancy .. -->
<style>
 .fuelux .datagrid { margin: 10px 0 0 0; }
 .fuelux .datagrid-header-right > .select,
 .fuelux .datagrid-header-right > .input-append { float: left; }
 .fuelux .datagrid tbody tr.odd { background-color: #f9f9f9; }
</style>
Note that I'm also including underscore.js, which is used by Fuelux per default.

To set up the datagrid I'm taking a starting point in the example provided on the Fuelux demo site. I have left out most of the html boilerplate code here since it's quite lengthy, but you can find it in the Github repository accompanying this demo.

<div class="container fuelux">
 <table id="DashboardDatagrid" class="table table-bordered datagrid">
 <thead>
 ...
 </thead>
 <tfoot>
 ...
 </tfoot>
 </table>
</div>

Basically I need to set up the header and footer html and then let the datagrid component render some rows and columns for me. To do this I need to provide it with a data source and a few options. Let's take a closer look at the data source.

The data source for the datagrid needs a defined set of columns and some data. I also provide it with a custom formatter to transform the name of the page into a link, so I can navigate directly to the given page in the content tree.

<script>
 var payload = <%= Payload %>;
 var dataSource = new DataGridDataSource({
 columns: [
 {
 property: "PageName",
 label: "Page name",
 sortable: true
 },
 {
 property: "PageType",
 label: "Page type",
 sortable: true
 },
 {
 property: "Updated",
 label: "Last updated",
 sortable: true
 },
 {
 property: "WriterName",
 label: "Last updated by",
 sortable: true
 },
 {
 property: "CreatorName",
 label: "Created by",
 sortable: true
 }
],
 formatter: function (items) {
 $.each(items, function (index, item) {
 item.PageName = "" + item.PageName + "";
 });
 },
 data: payload
 });
</script>
Payload? We'll get to that shortly, don't worry.

The data source is also responsible for configuring things like searching, filtering, sorting and paging the data. Most of the code is boilerplate taken from the samples at Github. Again, the code is rather lengthy so I left it out here.

There is one thing I need to customize though. One of the things I want to show on the dashboard is the date for the last time the pages were updated. But per default the datagrid will sort all columns alphabetically either ascending or descending. I need to tell the datagrid that I want the "Updated" column to sort on a date instead of text. This snippet expects the date to be in a certain format (da-DK). If you use a different date or time format just change your code accordingly.

if (options.sortProperty === "Updated") {
 data = _.sortBy(data, function (item) {
 var parts = item.Updated.split(' ');
 var dateParts = parts[0].split('-');
 var timeParts = parts[1].split(':');
 var date = new Date(dateParts[2], dateParts[1] - 1, dateParts[0], timeParts[0], timeParts[1]);
 return date.getTime();
 });
} else {
 data = _.sortBy(data, options.sortProperty);
}

if (options.sortDirection === 'desc') data.reverse();

The datagrid by default uses underscore.js to do the sorting. We don't need to worry much about this, but if you are interested in knowing more about underscore.js and it's sorting capabilities, you can read more about it here.

Now that I got a configured data source I can initialize the datagrid itself.

$("#DashboardDatagrid").datagrid({
 dataSource: dataSource,
 dataOptions: {
 pageIndex: 0,
 pageSize: 30,
 sortProperty: "Updated",
 sortDirection : "desc",
 filter: true
 }
}).on("loaded", function(e) {
 $(e.target).find("tr:odd").addClass("odd");
});
All the options provided should be fairly self-explanatory.

The "loaded" event will be triggered when the datagrid is first loaded and then every time it's paged. Whenever this event is triggered I want to add a class to every odd row to add some styling so it's easier to tell the rows apart.

So now that the setup for the datagrid is done, let's look at how we can provide it with some data from the server.

Introducing Examine

You probably already heard of Examine. It's been the topic of many talks and blog posts lately, and I can understand why as it's basically awesome.

If you somehow missed all the fuzz about Examine, I strongly suggest you go read about it now. Why not start with another entry in this years calendar, it's really friendly. And while you're at it, you might also want to familiarize yourself a bit with Lucene. Aaron Powell (@slace) has an excellent overview that I highly recommend you read. Go on, I'll be here patiently awaiting your return.

Fetching data from Examine

Ok, time to get to work and find some pages to display on the dashboard.

Most sites consists of content that is made up by a lot of different content types. Since I want the dashboard to show an overview of all the pages in the content tree, I need to know which content types that are actually considered to be content pages. For this demo I am assuming that all pages have a content type with an alias that is ending in "page" but your logic may vary, ajust accordingly.

using System;
using System.Linq;
using Umbraco.Core;
using Umbraco.Core.Services;

namespace Demo.usercontrols.dashboards.PageOverview
{
 public partial class View : System.Web.UI.UserControl
 {
 protected IContentTypeService ContentTypeService = ApplicationContext.Current.Services.ContentTypeService;
 protected string Payload;

 protected void Page_Load(object sender, EventArgs e)
 {
 var pageContentTypes = ContentTypeService
 .GetAllContentTypes()
 .Where(x => x.Alias.EndsWith("page"))
 .ToList();
 }
 }
}

I use the new services api to get all the relevant content types. This is really nice because now, if I ever add another page type to the site, I just need to adhere to my naming scheme and the new page type will automatically be fetched along with the others.

With the page content types in place, I can now begin to build my search criteria using the Examine fluent api.

var searcher = ExamineManager.Instance.SearchProviderCollection["InternalSearcher"];

var query = searcher
 .CreateSearchCriteria()
 .GroupedOr(new[] { "nodeTypeAlias" }, pageContentTypes.Select(x => x.Alias).ToArray());

var results = searcher.Search(query.Compile());

When I compile the search query Examine will go to work and return a collection of SearchResult objects that I can iterate through. Each result contains a relevance score, a node id and a dictionary with data from the index.

What I need to do now is serialize the results to a JSON string and dump it somewhere the datagrid can reach it. This is what the Payload variable is for.

I'm using Json.NET, which is included in newer Umbraco versions, to serialize my IEnumerable of anonymous objects into json. If you don't have access to Json.NET you can just use any other build in json serializer.

Note that I have to explicitly declare how to parse the date returned from Examine. I use the danish culture here but you can of course adjust that to suit your needs.

var culture = new CultureInfo("da-DK");

Payload = JsonConvert.SerializeObject(results.Select(x =>
{
 var fields = x.Fields;
 var updated = DateTime.ParseExact(fields["updateDate"], "yyyyMMddHHmmssfff", culture);

 return new
 {
 PageId = x.Id,
 PageName = fields["nodeName"],
 PageType = pageContentTypes.First(y => y.Alias == fields["nodeTypeAlias"]).Name,
 Updated = updated.ToString("dd-MM-yyyy HH:mm"),
 WriterName = fields["writerName"],
 CreatorName = fields["creatorName"]
 };
}));

And that's it! I now have a functioning dashboard with a datagrid showing a useful, easily sortable overview of all the pages in the content tree.

 [image: Somethings not right!]

 Somethings not right!

Part 2

Extending the dashboard

While I now have a working dashboard I did manage to introduce a potential security issue. You see, with the current search query I use, Examine is returning every single page in the content tree regardless if the current Umbraco user has access to those pages. Whoops..

To fix this little mistake I have to restrict my search to only fetch results among pages that is a descendant to the start node of the current Umbraco user. The only problem is that out of the box I can't do that. That's because, out of the box, Examine has no data stored on the ancestors of a node, it only indexes a nodes parent id. Luckily, it's easy to extend Examine to support this.

What I need to do is tell Examine to add some custom data every time a node is indexed in Lucene. This is achieved by hooking into the DocumentWriting event that Examine provides. This event is trigged every time Examine writes something to the index. Here I can access the dictionary with the values that Examine is going to put into the index, and I also get access to the raw Lucene document, so that I can add my own custom fields. All I need to do now is to find all the ancestor ids for a given node, and index them in a way that makes it possible to use them as a search criteria later on.

I can wire up this event hook in any class that implements the IApplicationEventHandler interface or I can tell the Global.asax file to inherit from the UmbracoApplication class and do it there. For this demo I have chosen the latter.

using System;
using Umbraco.Web;

namespace Demo
{
 public class Global : UmbracoApplication
 {
 protected override void OnApplicationStarted(object sender, EventArgs e)
 {
 base.OnApplicationStarted(sender, e);

 RegisterIndexRules();
 }

 protected static void RegisterIndexRules()
 {
 ...
 }
 }
}
There are many ways to hook into application start in Umbraco.

So how do I get all ancestors of a given node? Actually, Examine is already indexing the full path of the node as a comma separated string of ids. To be able to search efficiently on these ids, I need to make sure that they are separated by whitespaces instead. This is because the default internal index uses a whitespace analyzer, so when we use a whitespace as the delimiter the ids are split up into easily searchable terms.

I can then add the new whitespace delimited string to the Lucene document. There is no need to store the actual value though, we just want it analyzed and indexed without norms or term vectors.

var draftIndexer = ((LuceneIndexer)ExamineManager.Instance.IndexProviderCollection["InternalIndexer"]);

draftIndexer.DocumentWriting += (sender, args) =>
{
 var pathParts = string.Join(" ", args.Fields["path"].Split(','));
 var pathPartsField = new Field(
 "__PathParts",
 pathParts,
 Field.Store.NO,
 Field.Index.ANALYZED_NO_NORMS,
 Field.TermVector.NO
);

 args.Document.Add(pathPartsField);
};

This may all sound a bit confusing if you haven't worked with Lucene before. I won't go into details on the different ways to index data in Lucene here, but if you are interested in reading more about analyzers Aaron has a nice little intro to get you started.

A sidenode for Lucene nerds

Normally I would have added the ancestor ids as separate number fields and given them all the same field name without analyzing them. Unfortunately, as Examine uses a Dictionary<string, string> to map values from Lucene documents this means that if we have more fields with the same name, Examine will simply throw an exception when trying to add the same key multiple times. So for now it's necessary to index all ancestor ids as one white space analyzed string to be able to search on the individual ids.

I also realize that I could get by with a wildcard query that allows leading wildcards, which is actually what Examine does a few places itself, but I do not think that is a best practice approach, so I've chosen not to do that here.

Back on track

Whenever we change the way Examine should index nodes it's necessary to either re-save all the nodes to have them re-indexed or simply rebuild the index. In newer Umbraco versions there is a built-in dashboard to do this. For older versions a few packages exist to help you out (as far as I remember).

The dashboard for rebuilding the indexes is located in the developer section.

 [image:]

With a fresh index I can now refine my search to only include pages that the current Umbraco user has access to.

var me = User.GetCurrent();

var query = searcher
 .CreateSearchCriteria()
 .GroupedOr(new[] { "nodeTypeAlias" }, pageContentTypes.Select(x => x.Alias).ToArray())
 .And()
 .GroupedOr(new[] { "__PathParts" }, me.StartNodeId.ToString());

When we take a look at the dashboard now, the pages are indeed filtered as we would expect.

 [image:]

Next up I would like to add some data showing if the pages are published or not. Again, the only problem is, that I can't do that out of the box. I simply lack data about the state of a page since Examine does not index that information per default. This is because Examine makes the (fair) assumption that the published state of a node is determined by the index type (internal or external) that is used to search in.

Fortunately, it's easy to add the missing data to the index. The flexibility of Umbraco still continues to amaze me.

The logic I'm using is pretty trivial. If a node has a published version then it is considered published. This time I'm storing the values as I want to be able to retrieve them from the index. I've also chosen not to analyze it. That's because when no analyzer is used the value will be indexed as a single term which is useful if I need to do a search on this field at some point.

var hasPublishedVersion = contentService.HasPublishedVersion(args.NodeId);
var hasPublishedVersionField = new Field(
 "__HasPublishedVersion",
 hasPublishedVersion ? "1" : "0",
 Field.Store.YES,
 Field.Index.NOT_ANALYZED_NO_NORMS,
 Field.TermVector.NO
);

args.Document.Add(hasPublishedVersionField);

Next, I have to rebuild the index again. And then all I have to do is add a Published property to the objects in the Payload data and add a column in the datagrids data source.

/* View.ascx.cs */
return new
{
 ...
 CreatorName = fields["creatorName"],
 Published = fields["__HasPublishedVersion"] == "1"
};

/* View.ascx */
columns: [
 { },
 {
 property: "Published",
 label: "Published",
 sortable: true
 }
]

If we take a look at the dashboard now we have a column that shows if pages are published or not.

 [image: Such error, much issues, very buggy, wow!]

 Such error, much issues, very buggy, wow!

Examine, we have a problem

But wait, what is that? If you look closely, there clearly are some issues with the data shown. I put in some extra test data and triggered a few scenarios that will cause our current setup to show data about the pages published state that is out of sync with the database. What gives?

Remember that we are using an internal index. An internal index in Examine terms means that it's configured to support unpublished content. Examine has different logic for updating internal indexes than it does for external indexes, that is, indexes that doesn't support unpublished content. Let's investigate.

Whenever a single node is published, Umbraco will trigger the following events in order:

	Saved

	Published

	AfterUpdateDocumentCache

The first two should be self-explanatory and the AfterUpdateDocumentCache is triggered once per node when the xml cache is updated with that node.

However, if a node is published along with its descendants then the Saved event won't be triggered since only the published state will be changed. This means that only the Published and AfterUpdateDocumentCache events will be triggered. Examine will update nodes in the internal index whenever the Saved event is triggered. For the external index it will update nodes on the AfterUpdateDocumentCache event.

So, if we publish multiple nodes then the internal index simply won't be updated because the Saved event isn't triggered. This means that the internal index won't know about the pages being published and I end up with an index that is out of sync.

Let's look at another problem. Whenever a node is unpublished, Umbraco will trigger the following events in order:

	Unpublished

	AfterClearDocumentCache

Examine will update nodes in the external index whenever the AfterClearDocumentCache event is triggered. But that's it! By default the internal index won't be updated when a node is unpublished, so again I end up with an index that is out of sync.

The last issue has to do with the Trashed event, which is triggered every time a node is trashed. Examine has a hook on this event, however, the event is only triggered for the selected node, not it's descendants. Yet another thing that will cause the internal index to go out of sync.

A sidenode on events

There are several more events available in Umbraco than included here, but these here are the only ones relevant for this demo. So, for brevity, I left out the rest.

Back on track

To make sure my internal index is kept in sync, I have to manually tell Examine when to update it. Luckily it's pretty easy to do. For this demo I've wired it all up in the Global.asax file, just like the custom indexing stuff.

Examine needs an XElement to reindex a node. Fortunately it's easy to convert our IContent items via an extension method.

ContentService.UnPublished += (sender, args) =>
{
 foreach (var publishedEntity in args.PublishedEntities)
 {
 draftIndexer.ReIndexNode(publishedEntity.ToXml(), "content");
 }
};

ContentService.Trashed += (sender, args) =>
{
 /* The Trashed event is only triggered for the selected node.
 Get all descendants and re-index them as well. */
 var descendants = sender.GetDescendants(args.Entity);
 foreach (var descendant in descendants)
 {
 draftIndexer.ReIndexNode(descendant.ToXml(), "content");
 }
};

content.AfterUpdateDocumentCache += (sender, args) =>
{
 /* The AfterUpdateDocumentCache is part of the old api, so we are given a Document.
 Get the IContent equivalent instead. */
 var contentItem = ApplicationContext.Current.Services.ContentService.GetById(sender.Id);
 draftIndexer.ReIndexNode(contentItem.ToXml(), "content");
};

With these hooks in place I now have a consistent way of keeping the internal index in sync. Now I just need to rebuild the index as shown earlier and I'm good to go.

There is one last issue that I need to deal with though. While it might not be obvious from the screenshots, Examine will always keep trashed nodes in the internal index. But I don't want the dashboard to include pages in the recycle bin. To avoid that, I can modify the search query to exclude all pages that has an ancestor with the id of -20. This id is a universal constant for the content recycle bin and can be safely hardcoded in.

var query = searcher
 .CreateSearchCriteria()
 .GroupedOr(new[] {"nodeTypeAlias"}, pageContentTypes.Select(x => x.Alias).ToArray())
 .And()
 .GroupedOr(new[] {"__PathParts"}, me.StartNodeId.ToString())
 .Not()
 .GroupedOr(new[] {"__PathParts"}, "-20");

With the modification to the search query, I no longer have pages in the recycle bin popping up in the dashboard, nice!

 [image:]

One last thing

There is one last piece of funtionality, that I want to add to the dashboard. Noticed the dropdown just left of the search field? At the moment it's a useless filter with some dummy options. I want to setup a new filter that actually does something.

On several of the dashboards I have built for clients I have introduced the concept of page owners. The rules are simple. If the current Umbraco user created or edited a given page at some point in time, then that user is considered one of the owners of that page. There is a reasonable chance that the user only cares about the pages that the user owns, so it would be useful to get a filtered view of those pages only.

Out of the box Examine will only index the last editor of a given page. Therefore, I need to add data about all the users who have edited the page at any point in time. To get the data I need, I have to get all known versions of the page in question and collect a distinct list of the editor ids.

var writerIds = contentService
 .GetVersions(args.NodeId)
 .Select(x => x.WriterId)
 .Distinct();

var writerIdsField = new Field(
 "__AllWriterIds",
 string.Join(" ", writerIds),
 Field.Store.YES,
 Field.Index.ANALYZED_NO_NORMS,
 Field.TermVector.NO
);

args.Document.Add(writerIdsField);

I need to rebuild the index again now, and then I can add a new boolean property (MyPage) to the objects in the payload on the server. This boolean determines if the page is owned by the current Umbraco user or not.

Payload = JsonConvert.SerializeObject(results.Select(x =>
{
 var fields = x.Fields;

 var creatorId = int.Parse(fields["creatorID"]);
 var writerIds = fields["__AllWriterIds"].Split(' ').Select(int.Parse);
 ...

 return new
 {
 MyPage = me.Id == creatorId || writerIds.Contains(me.Id),
 PageId = x.Id,
 ...
 };
}));

In the datagrids data source I can now modify the existing boilerplate filter to filter on the MyPage property instead.

if (options.filter) {
 data = _.filter(data, function (item) {
 var match;
 switch (options.filter.value) {
 case "all":
 match = true;
 break;
 default:
 match = item.MyPage === true;
 break;
 }
 return match;
 });
}

I also need to change the html appropriately. I'm just showing a small snippet of the html here, check out the Github repository for the complete code.

<div class="select filter" data-resize="">
 <button type="button" data-toggle="dropdown" class="btn dropdown-toggle">

 </button>
 <ul class="dropdown-menu">
 <li data-value="mypages" data-selected="true">My pages only
 <li data-value="all">All pages

</div>
You can just shift the two li elements if you want to show all pages by default.

With the new filter in place, the editors can easily switch between their own pages and all pages, while still only seeing pages that they have access to, awesome!

Hopefully you will find this dashboard useful, and hopefully you can see a potential for extending it with more data valuable to your clients.

I'll be happy to answer any questions you might have regarding all this, and in case you missed it, here is the link to the Github repository again.

Merry Christmas everybody :)
Wrapping Up Another year
— by Chriztian Steinmeier
We did it - the 2nd annual Christmas Calendar for Umbracians by Umbracians has come to the final installment.

Once again, a lot of ground was covered - from very code-heavy posts aimed at developers, to posts all about the editor experience - and judging by the tweets, comments and traffic, we liked it all and sucked it right in.

We would have loved to have a full post today with cool stuff for everyone, but the circumstances tells us it's not going to happen - we had something but had to let it go due to the increasing pressure that is December - everybody has tons of stuff to do and there's only 24 hours in a day, and personally, it feels like I've used them all a couple of times now :-)

Next year, we'll try something different to see if we can get this baby airborne a little smoother.

So for now, I'll just wish you all a Merry Christmas and a Happy New Year, and as soon as I've published this, I'll hit the Generate EPUB button, and put a download link in after this paragraph.

(For the curious: The EPUB is generated by a bash script that downloads an XML export of all the articles, performs multiple XSLT transforms, downloads all the assets, transforms everything into the special formats required by an EPUB, copies everything into place and then finally zips it all up in the EPUB file).

That's it - I really hope to see you all sometime in 2014!
OEBPS/images/CoverImage2013.png
4 DAYS

IN UNBRACO

2013 EDITION

